新型基因编辑技术中使用的核酸酶主要有四类,分别是:巨核酸酶、锌指核酸酶(ZFN);转录激活因子样效应核酸酶 (TALEN);以及成簇的规律间隔的短回文重复序列 (CRISPR) 相关 (Cas) (Gaj 等人,2016)。巨核酸酶是一种在特定区域切割 DNA 的内切核酸酶,可识别大于 12 bp(碱基对)的序列。 LAGLIDADG 巨核酸酶家族包含 I-CreI 和 I-SceI,它们是第一种用于基因编辑的酶。由于只有少数氨基酸残基与核苷酸接触,这些酶被设计用于在特定位点切割基因(Paques;Duchateau,2007)。此外,ZFN 是一种人工酶,也是最早用于诱导植物靶向突变的酶之一。这些酶是由锌指型结构域和限制性酶 Fok I 的结构域融合产生的。与基因编辑中使用的其他核酸酶一样,ZFN 会在需要修复的 DNA 特定位置插入双链断裂 (DSB),并且由于修复机制中的故障,可能会出现突变 (Carroll, 2011)。使用该系统的主要问题是这种酶的高毒性,以及它会产生许多脱靶效应(Cornu et al., 2008; Ramirez et al., 2008),这会损害不应改变功能的基因的功能(Zhang et al., 2015)。随着版本的合并
电子邮件:leitzkeeduarda@gmail.com摘要简介:Polymicrogiria(PMG)是胚胎学和遗传变化引起的最常见的皮质畸形之一。PMG影响大脑皮层,这是感觉,运动和认知功能的关键结构。在遗传原因中,它凸显了Grin1基因的突变,该突变编码了NMDA受体的一部分,它是神经可塑性的基础。PMG患者通常患有难治性癫痫和运动障碍,需要多学科治疗目标:讨论PMG及其家人患者的生活质量,以及对父母的遗传咨询的作用。方法:这项研究是一项综合文献综述,分析了PubMed,Scielo,Lilacs等的相关PMG研究。使用了诸如“ polymicrogyria”,“脑疾病”,“皮质发育畸形”和“脑皮质”之类的描述符。纳入标准是:与主题相关,全文可用性,英语,葡萄牙语或西班牙研究,并在2014年至2024年之间出版。重复,低质量的方法论研究已发表了10多年,并专注于其他大脑畸形,被排除在外。仔细选择后,分析了17项研究,包括案例报告,书目审查和队列论文。讨论:皮质发育畸形(MCD)是脑部皮质发育过程中断引起的脑异常。PMG的特征是多余的皮质褶皱,导致皮质异常厚。其病因是多方面的,涉及缺血性低氧损伤和先天性感染等遗传和环境因素。影响NMDA受体功能的Grin1基因中的突变是PMG遗传原因的一个例子。诊断是通过磁共振成像进行的,该成像揭示了皮质转弯和厚皮质等特征。治疗是有症状的,专注于通过多学科方法改善患者的生活质量。结论:PMG是一种复杂的神经系统状况,需要整体和综合方法。管理涉及控制癫痫发作,改善肌肉张力和对家庭的心理支持。遗传咨询对于防止新病例并提供知情的生殖计划至关重要。尽管研究已经进步了,但仍需要填补大量差距。研究的连续性对于发现新的遗传突变和发展
Count Amegnlo,ROM Chvallier,Djabare Mederia,称重Ouueli Ouefili,We of We of We Muchiri,Claido Slerry Santos,Zakre Freedic,Oumau,Chomma Aduu,Isa,E,E有Rogers,Permama,Permama,Phetma' MPHWAMBA,JOSHE NZANG NZANG,HAMILING SOULEMAMAN,DAVY OMOTHE MBOUMA,DAISPOSS ATTI,DAISY MUKARAKA,DAISY BOY,ROYBUA。劳拉·克莱默(Laura Cramer),夏洛特(Charlotte HonoréTonga,公共焦点,Hanah Sack,David Olufemi Awola,Telvin Tower,Kent Buchan等。AumaAuma Alum Auma。
人类表皮生长因子受体 2 (HER2) 的致癌潜能和激活已在多种人类恶性肿瘤中得到证实,最显著的是乳腺癌和胃/胃食管连接部 (GEJ) 癌。这些癌症中 HER2 激活的主要机制是 HER2 基因扩增,导致 HER2 蛋白在细胞膜上完全过表达 [1,2]。近年来,人们还认识到 HER2 的其他基因组改变会导致蛋白质活化,其中 HER2 基因突变是最重要的形式 [3]。HER2 突变通常为激活型,其中大多数不伴有 HER2 基因扩增 [3-5]。在前列腺神经内分泌癌、转移性皮肤鳞状细胞癌和膀胱尿路上皮癌中观察到了最高的 HER2 突变患病率 (>10%)。此外,HER2 突变也已在肺癌、结直肠癌和乳腺癌等常见癌症中出现,这表明
这是一种高度可治疗的疾病,发病率和死亡率较低。从药理学人物到介入疗法的过渡已使死亡率从目前的6%/y降低到10倍以上(95%生存10年)。选择性替代性经皮饮酒消融对手术,外科膜肌瘤切除术,栓塞药的药理学前的培养和心房颤动的减少在改善生活质量方面取得了重大进展[4]。除了可以预测猝死的风险分层算法外,预防性植入式除颤器还可以预防。然而,在HCM数量巨大的国家中,更多地接受和实施了由社会,文化和资源障碍所掩盖的国家,对于满足未满足的需求和重大挑战至关重要[5]。此外,正在开发的新型治疗方法旨在预防和延迟疾病的发作,这是在突变携带者患者中治疗的主要目标[5]。
简介:阿尔茨海默氏病(DA)是一种复杂的神经退行性疾病。的机制,例如编码淀粉样蛋白前体蛋白(APP)和tau蛋白的基因突变,参与了该疾病,这是通过β-收获蛋白的产生增加而证明的。最近的研究表明,干扰RNA技术(RNAI)以及CRISPR/CAS9系统可以通过抑制特定基因的蛋白质表达(例如APP和TAU蛋白)的蛋白质表达来控制DA,从而激活了特定基因组序列降解的过程。目的:研究DA的生理效应,并收集有关RNAi和CRISPR/CAS9的最新信息,并评估该疾病中的这两个治疗潜力。方法:进行了参考书目审查,以寻求与DA有关的学术文章及其涉及干扰RNA机制和CRISPR/CAS9的新治疗可能性。结果:RNAi和CRISPR/CAS9都证明具有巨大的逆转基因突变潜力,能够为该病理学中的临床应用提供有效的方法。虽然CRISPR/CAS9系统的主要用途是直接在DNA中诱导遗传编辑,但RNAi是转录后基因表达的修饰过程。结论:这些基因工具和基因组编辑可以通过控制与其发病机理相关的基因表达来实现新的治疗。
WEO 团队的主要贡献者包括:Lucila Arboleya Sarazola(投资和金融)、Yasmine Arsalane(经济展望、电力负责人)、Blandine Barreau(恢复计划分析)、Simon Bennett(氢能、能源技术负责人)、Daniel Crow(行为分析、空气污染负责人)、Davide D'Ambrosio(数据科学、电力负责人)、Amrita Dasgupta(氢能、关键矿物)、Tanguy de Bienassis(投资和金融)、Tomás de Oliveira Bredariol(甲烷)、Musa Erdogan(化石燃料补贴、数据管理)、Eric Fabozzi(电力和电网)、Víctor García Tapia(数据科学、建筑)、Victor Gautier(工业)、Pablo Gonzalez(投资和金融)、Timothy Goodson(终端需求分析联合负责人)、Shai Hassid(电力)、Paul Hugues(工业负责人)、Inchan Hwang(投资和金融)、 Bruno Idini(交通运输)、George Kamiya(能源技术、数字化)、Tae-Yoon Kim(燃料供应分析和能源安全联合负责人)、Vanessa Koh(电力和电网)、Martin Kueppers(工业、非洲)、Lilly Yejin Lee(交通运输)、Laura Maiolo(石油和天然气供应)、Ariane Millot(建筑、气候和环境)、Toru Muta(燃料供应)、Lucas Pereira(需求侧响应)、Apostolos Petropoulos(交通运输负责人)、Mariachiara Polisena(电力)、Ryszard Pospiech(供应建模和数据管理)、Arnaud Rouget(能源获取和非洲)、Jasmine Samantar(能源获取和非洲)、Rebecca Schulz(石油和天然气
蛋白激酶属于磷酸转移酶超家族,通过磷酸化“激活”酶。生物体的激酶组是基因组中编码所有蛋白激酶的基因总集。激酶组中的某些突变与蛋白激酶失调有关,而蛋白激酶失调又会导致包括癌症在内的多种疾病和病症。在这篇综述中,我们通过对癌症相关表型进行分类并给出其蛋白激酶实例,简要讨论了蛋白激酶在各种生化过程中的作用。我们还讨论了各种技术,这些技术用于分析蛋白激酶的结构,并将它们与肿瘤发生中的作用联系起来。我们还讨论了蛋白激酶抑制剂和美国联邦药物管理局 (USFDA) 批准的药物,这些药物针对蛋白激酶,可以作为对抗蛋白激酶失调的药物,并减轻致癌原的影响。总体而言,本综述简要介绍了蛋白激酶的重要性、它们在失调致癌过程中的作用以及如何通过各种药物抑制它们以减轻其影响。
在编码与自噬相关的蛋白质的基因中的突变,例如ATG(英语,自噬基因基因)基因,对于在细胞降解过程中自动吞噬体的形成和功能至关重要(10),可能导致有缺陷的分子或多余的自由基的积累。这会损害细胞,从而导致DNA不稳定并促进亲构环境(20)。HMGB1蛋白在调节自噬中起着至关重要的作用,直接与ATG蛋白相互作用以促进自动尾象体的形成(10)。因此,HMGB1多态性会影响自噬的效率,从而损害细胞正确确定的能力。因此,可能存在异常蛋白质和细胞废物的积累,形成有助于癌症发展的微环境(20)。
摘要:成骨不全症 (OI) 是一种遗传性疾病,其特征是骨质疏松、骨质严重脆弱和骨矿物质密度降低。它主要是由基因突变引起的,例如负责合成 I 型胶原蛋白的 I 型胶原蛋白 α 1 链 (COL1A1) 和 I 型胶原蛋白 α 2 链 (COL1A2)。值得注意的是,90% 的 OI 病例是由显性遗传基因引起的,例如 COL1A1 或 COL1A2 ,而只有 10% 的病例是由 23 个隐性基因引起的。本综述总结了与不同类型 OI 相关的基因。本综述还强调了周期性双膦酸盐治疗对 OI 患者的重要性,以改善骨矿物质量、活动性评分,降低骨折率并减少疼痛发作。本综述的目的是深入了解该疾病的管理政策,为临床医生/研究人员提供知识,帮助他们对 OI 类型进行分类,并最终寻找更有效的治疗策略。此外,本综述提供的信息可能有助于改善 OI 患者的管理、诊断准确性和治疗计划,以改善患者的预后。