摘要 儿童低级别胶质瘤 (pLGG) 是最常见的儿童脑肿瘤组。当无法进行根治性切除时,其自然病程是一种慢性疾病,肿瘤稳定期和肿瘤进展期交替出现。虽然总体存活率很高,但许多患者会经历严重的、可能终生的疾病。由于突变事件,大多数 pLGG 具有潜在的 RAS/MAPK 通路激活,导致在临床试验中使用分子靶向疗法,最近监管机构批准了 BRAF 和 MEK 抑制组合用于 BRAFV600E 突变的 pLGG。尽管活动令人鼓舞,但由于药物耐药性,治疗期间可能会发生肿瘤复发,停止治疗后可能会出现肿瘤复发,或者据报道,一些患者在停止靶向治疗后 3 个月内出现快速反弹生长。在 pLGG 中,这些再生模式的定义尚未得到很好的描述。因此,国际儿童低级别胶质瘤联盟(一个由全球医生和科学家组成的团体)成立了耐药性、反弹和复发 (R3) 工作组,以研究耐药性、反弹和复发。采用改良的德尔菲方法,针对 pLGG 的再生模式制定了基于共识的定义和建议,并特别提到了靶向治疗。
摘要 儿童低级别胶质瘤 (pLGG) 是最常见的儿童脑肿瘤组。当无法进行根治性切除时,其自然病程是一种慢性疾病,肿瘤稳定期和肿瘤进展期交替出现。虽然总体存活率很高,但许多患者会经历严重的、可能终生的疾病。由于突变事件,大多数 pLGG 具有潜在的 RAS/MAPK 通路激活,导致在临床试验中使用分子靶向疗法,最近监管机构批准了 BRAF 和 MEK 抑制组合用于 BRAFV600E 突变的 pLGG。尽管活动令人鼓舞,但由于药物耐药性,治疗期间可能会发生肿瘤复发,停止治疗后可能会出现肿瘤复发,或者据报道,一些患者在停止靶向治疗后 3 个月内出现快速反弹生长。在 pLGG 中,这些再生模式的定义尚未得到很好的描述。因此,国际儿童低级别胶质瘤联盟(一个由全球医生和科学家组成的团体)成立了耐药性、反弹和复发 (R3) 工作组,以研究耐药性、反弹和复发。采用改良的德尔菲方法,针对 pLGG 的再生模式制定了基于共识的定义和建议,并特别提到了靶向治疗。
前列腺癌 (PCa) 是男性中第二常见的癌症类型。已知 BRCA1 和 BRCA2 基因突变与乳腺癌和卵巢癌的进展有关,并且已分析表明其会增加罹患 PCa 的风险。生成有关 BRCA1 和 BRCA 基因表达特征的信息并将其与前列腺癌严重程度标准相关联,对于早期发现这种肿瘤的更具侵袭性的形式非常重要。从 89 名个体中收集了经直肠前列腺活检组织碎片样本。 84 名患者的样本被送去进行分子技术分析,通过聚合酶链式反应 (PCR) 获取 BRCA1 和 BRCA2 转录本表达的相对量。 26 名(30.90%)患者检测出 PCa 呈阳性,且 PSA 水平 > 10 ng/ml(p=0.019)。在 PCa 阳性患者中,BRCA1 和 BRCA2 基因在阴性片段中的中位表达较高,分别为 p=0.002 和 p=0.038。根据 Gleason 分类和 PSA 值,BRCA1 和 BRCA2 基因的表达没有统计学差异。与未患前列腺肿瘤的个体的片段相比,前列腺癌患者的阴性片段中 BRCA1 和 BRCA2 基因的中位表达更高。了解 BRCA1 和 BRCA2 基因的表达、突变与 PCa 发展之间的关系仍然是一项重大挑战。然而,这些基因在癌症患者的阴性片段中表达较多可能推断出它们与恶性表型的发展之间的关系,这可以通过分析大量样本并因此将其与这种疾病的进程联系起来得到证实。
原件收到:06/19/2024 接受出版:07/09/2024 Stephane Raquel Barreto Lima Graduanda em Biomedicina Instituição:Claretiano Centro Universitário Endereço:Boa Vista,Roraima,Brasil 电子邮件:stephane.raquel@hotmail.com Suammy Alejandra Vasquez Oliveira Graduanda em生物医学研究所:Claretiano Centro Universitário Endereço:博阿维斯塔,罗赖马,巴西 电子邮件:suammyalejan@gmail.com Cleber Medeiros Silva Mestre em Propriedade Intelectual e Transferência de Tcnologia 研究所:Universidade Federal de Roraima (UFRR) Endereço:博阿维斯塔,罗赖马,巴西 电子邮件: cleber.medeiros.silva@gmail.com Iaci Gama Fortes Mestre em Imunologia Básica e Aplicada Instituição: Universidade Federal do Amazonas (UFAM) Endereço: Boa Vista, Roraima, Brasil 电子邮件:biomedica.iaci@gmail.com RESUMO 镰状贫血症和遗传性贫血自体隐性、因血红蛋白突变引起的过敏反应、血红蛋白 S (HbS) 的产生和血液循环的改变,引发血管闭塞危机和进展。胎儿血红蛋白 (HbF) 的诱发和治疗贫血的方法
在近几十年内,涉及DNA精确操纵的核酸酶的技术已经发生了深刻的进步,成为了诱导音节突变的有希望的替代方法,并且对基因表达的薄而控制。是基因组编辑,例如核酸酶锌指(锌指核酸酶),具有转录本激活型效应的数字(Talens,英语转录本类核酸酶),以及最近的CRISPR/CAS技术(来自英语粘膜调节性调节性的短与核酶壳相关)。后者具有其革命性,尤其是为了缘故,普遍性和相对简单性(Pickar-Oliver; Gersbach,2019年)。此外,CRISPR/CAS是一种灵活的工具,需要进行修改,这有助于其持续的改进并多样化其在细胞功能和生物技术中的应用。
Originals Received: 06/19/2024 ACCEPTANCE FOR PUBLICATION: 07/09/2024 Stephane Raquel Barreto Lima Graduate in Biomedicine Institution: Claretiano University Center Address: Boa Vista, Roraima, Brazil E-mail: stephal@hotmail.com Suammy Alejandra Vasquez Oliveira Biomedicine Institution: Claretian Centro University Address: Boa Vista, Roraima, Brazil E-mail: Suammyalejan@gmail.com Cleber Medeiros Silva Master in Intellectual Property and Technology Transfer Institution: Federal University of Roraima (UFRR) Address: Boa Vista, Roraima, Brazil E-mail: cleber.medeiros.silva@gmail.com Iaci Gama Fortes Master in Basic Immunology and Applied Institution (UFAM)地址为巴西Roraima的Vista,电子邮件:biomedical.iaci@gmail.com摘要镰状细胞性贫血是一种常染色体隐性型遗传,是由红细胞血红蛋白突变引起的器官。 胎儿血红蛋白诱导(HBF)是贫血的治疗方法Originals Received: 06/19/2024 ACCEPTANCE FOR PUBLICATION: 07/09/2024 Stephane Raquel Barreto Lima Graduate in Biomedicine Institution: Claretiano University Center Address: Boa Vista, Roraima, Brazil E-mail: stephal@hotmail.com Suammy Alejandra Vasquez Oliveira Biomedicine Institution: Claretian Centro University Address: Boa Vista, Roraima, Brazil E-mail: Suammyalejan@gmail.com Cleber Medeiros Silva Master in Intellectual Property and Technology Transfer Institution: Federal University of Roraima (UFRR) Address: Boa Vista, Roraima, Brazil E-mail: cleber.medeiros.silva@gmail.com Iaci Gama Fortes Master in Basic Immunology and Applied Institution (UFAM)地址为巴西Roraima的Vista,电子邮件:biomedical.iaci@gmail.com摘要镰状细胞性贫血是一种常染色体隐性型遗传,是由红细胞血红蛋白突变引起的器官。胎儿血红蛋白诱导(HBF)是贫血的治疗方法
有几件事常常会出错。首先,基因编辑工具或“基因剪刀”可以在基因组中与目标位点相似的非预期位置进行切割,从而导致非目标基因发生突变(DNA损伤)。其次,即使在预定的编辑位点也会发生不同类型的无意DNA损伤,这可能导致许多基因功能的意外破坏或中断。第三,整个基因编辑过程(包括必需的植物细胞组织培养阶段)会导致生物体基因组中发生数百或数千个随机突变,其中一些突变会破坏许多基因的功能,即使是无意的。
GATA2 缺陷属于世界卫生组织 (WHO) 新近确定的一组易患髓系恶性肿瘤的遗传综合征(Smith et al., 2004)。具有种系杂合 GATA2 突变的个体表现出非常复杂和多系统的表现型,包括血细胞减少导致的 MDS、免疫缺陷(涉及 B、NK、单核细胞、CD4 +、DC 细胞谱系)、耳聋和淋巴水肿(Hahn et al., 2011)。根据文献报道,至少 75% 的 GATA2 突变携带者在估计的中位年龄 20 岁时患上 MDS/AML(Wlodarski et al., 2016)。如今,化疗和同种异体造血干细胞 (HSC) 移植仍然是唯一具有良好反应的治疗方法。由于缺乏可靠的疾病模型系统,我们无法从机制上理解 GATA2 单倍体不足如何影响造血发育。种系 GATA2 突变要么是截短的功能丧失 (LOF) 突变,要么是 ZF2 的错义突变,要么是破坏内含子 4 增强子位点的突变 ( Wlodarski et al., 2016 )。这些突变被认为会导致 GATA2 功能降低/丧失,特别是消除 ZF2 的 DNA 结合功能 ( Chong et al., 2018 )。迄今为止,只有少数种系 GATA2 突变进行了功能研究。因此,使用精确的基因编辑策略,我们生成了携带两种最
摘要基于青蒿素的组合疗法(ACT)被引入了大约二十年前非洲简单疟疾的护理标准。最近在东非的研究报告说,与降低的邻苯二甲酸酯疗效有关的Kelch13(K13)突变寄生虫逐渐增加。作为社区进入疟疾项目的直肠临时工的一部分,我们从2018年至2020年期间和2020年期间和2020年期间从697名儿童那里收集了697名儿童的血液样本,并在2019年引入直肠活动之前和之后。K13多态性,并进行了寄生虫的编辑和表型,以评估突变对寄生虫耐药性的影响。全基因组测序,并构建了单倍型网络以确定K13突变的地理起源。在大多数情况下,在697名儿童中,有540名对恶性疟原虫疟疾的阳性为阳性,并用RAS或可注射的青臂单一疗法进行治疗。最常见的K13突变是C469Y(6.7%),在RAS引入后收集的样品中发现了更频繁的检测到。基因组编辑证实,与野生型对照相比,C469Y-HARBORING寄生虫的体外敏感性降低了(P <0.001)。单倍型网络表明,C469Y突变的侧翼区域具有相同的非洲遗传背景,表明该突变的单一和本地起源。我们的数据为抗蒿甲蛋白毒素的C469Y突变提供了选择的证据。在非洲出现的多耐药寄生虫的现实威胁应鼓励仔细监测青蒿素衍生物的功效,并严格遵守采取治疗方案。
Oskaras Alšauskas(运输)、Lucila Arboleya Sarazola(投资和金融)、Yasmine Arsalane(经济前景、电力负责人)、Blandine Barreau(复苏计划)、Simon Bennett(氢能、能源技术联合负责人)、Charlène Bisch(数据管理)、Justina Bodláková(就业)、Olivia Chen(就业)、Yunyou Chen(电力)、Daniel Crow(行为、空气污染负责人)、Davide D'Ambrosio(数据科学、电力负责人)、Amrita Dasgupta(关键矿物)、Tanguy De Bienassis(投资和金融)、Tomás de Oliveira Bredariol(煤炭、甲烷负责人)、Michael Drtil(电力和电网)、Darlain Edeme(非洲)、Musa Erdogan(化石燃料补贴、数据管理)、Eric Fabozzi(电力和电网)、Víctor García Tapia(数据科学、建筑)、Pablo González(投资和金融)、Timothy Goodson(建筑负责人)、Emma Gordon(投资和金融)、Jérôme Hilaire(石油和天然气供应建模负责人)、Paul Hugues(工业负责人)、Jacob Hyppolite II(能源获取)、Bruno Idini(交通)、George Kamiya(能源技术、数字化)、Hyeji Kim(交通)、Tae‐Yoon Kim(能源安全和关键矿产负责人)、Martin Kueppers(工业)、Tobias Lechtenbohmer(工业)、Laura Maiolo(石油和天然气供应)、Orla McAlinden(行为)、Yannick Monschauer(可负担性)、Toru Muta(化石燃料补贴负责人)、Paweł Olejarnik(供应建模)、Diana Perez Sanchez(工业)、Apostolos Petropoulos(交通负责人)、Mariachiara Polisena(电力)、Ryszard Pospiech(煤炭供应负责人)建模、数据管理)、Arthur Rogé(建筑)、Max Schoenfisch(电力)、Rebecca Schulz(石油和天然气供应)、Leonie Staas(建筑、行为)、Gianluca Tonolo(能源获取负责人)、Wonjik Yang(数据可视化)和 Peter Zeniewski(天然气负责人)。其他贡献者包括 Niccolò Hurst 和 Carlo Starace。Marina Dos Santos 和 Eleni Tsoukala 提供了重要支持。