摘要这项研究的目的是估算Kaptai国家公园中的树木生物多样性。在Rangamati Hill Tracts区的Rangamati South Forest Division的管辖下,Kaptai国家公园的总面积约为4,564公顷(11,273.08英亩)。该研究仅通过对Kaptai国家公园的树种组成进行广泛的调查进行。在调查过程中,从公园记录了29个家庭的65种树种。在植物家族中,薄膜科具有最多的物种(7),其次是Meliaceae(6),Ancardiaceae,Ancardiaceae(5),Moraceae,Moraceae(4),Verbenaceae(4),Combretaceae(4),Myrtaceae(4),Myrtaceae(4),Dipterocarocarpaceae,Fabaceae(3),2(3),Rubiace(3)(3),Rubiace(3),Rubiace(3),Rubiace(3),Rubiace(3),Rubiace(3),Rubiace(3),Rubiace(3),3) (2),凯撒尼亚科(2),dilleniaceae(2)和bignoniaceae(2)。有15个家庭包含单个物种。属于含有含羞草家族的树种在物种数量及其种群方面受到了主导。本研究的发现将在这个退化的森林生态系统以及Kaptai国家公园的保护,保护和可持续管理中贡献。
摘要Melaleuca Quinquenervia(Cav。)S.T. Blake(Myrtales:Myrtaceae)是一棵在美国佛罗里达州的入侵树,为此,psyllid,boreioglycaspis melaleucae(Moore)(Hemiptera:Aphalaridae)在2002年4月成功建立以控制其传播。 寄生虫黄蜂,psyllaephagus迁移者McClelland,sp。 nov。被发现是可以在澳大利亚寄生的这种木板,我们认为这是其本地范围,在佛罗里达州,我们认为它是浮雕的。 我们为P.迁移者提供了描述,高分辨率图像和形态诊断,以及五个基因区域的分子数据集,以促进其在系统发育研究中的识别和使用。 寄生虫的生物学以其未成熟阶段的文献呈现。 捕获数据表明,P。迁移者减少了佛罗里达州生物防治剂B. helaleucae的种群。S.T.Blake(Myrtales:Myrtaceae)是一棵在美国佛罗里达州的入侵树,为此,psyllid,boreioglycaspis melaleucae(Moore)(Hemiptera:Aphalaridae)在2002年4月成功建立以控制其传播。寄生虫黄蜂,psyllaephagus迁移者McClelland,sp。nov。被发现是可以在澳大利亚寄生的这种木板,我们认为这是其本地范围,在佛罗里达州,我们认为它是浮雕的。我们为P.迁移者提供了描述,高分辨率图像和形态诊断,以及五个基因区域的分子数据集,以促进其在系统发育研究中的识别和使用。寄生虫的生物学以其未成熟阶段的文献呈现。捕获数据表明,P。迁移者减少了佛罗里达州生物防治剂B. helaleucae的种群。
下Asteraceae Solanenio Solanacio Mannii(Hook.f。)3 2.38 3下Betulaceae alnus alnus acuminata kunth 3 2.38 2下celastraceae Catha forssk Catha Edulis(Vahl)forssk。ex 3 2.38 2较低的Ericaceae Erica L. Erica Arborea L. 5 3.96 4下埃里卡科·阿古里亚·阿古里亚·阿古里亚·萨利西弗利亚(Comm。ex 2 1.58 1 Lower Euphorbiaceae neoboutonia Neoboutonia Macrocalyx pax 15 11.9 6 Lower Euphorbiaceae Macaranga Kilimandscharica pax 2 1.58 1 Lower Gentiaceae anthoclentist anthoclentist grandiflora Gilg 1 0.79 1 Lower Meliaceae Carapa Carapa Grandiflora Sprague 1 0.79 1较低的Hypercaceae HyperCum HyperCum Revolutum Vahl。4 3.17 3下Meliaceae Lepidatrichilia lepidatricilia volkensii(gürke)10 7.93 4下莫拉西·弗里斯·弗里斯(Moraceae Ficus Tourn)。ex ficus thonningii blume 2 1.58 1降低myrtaceae syzygium gaertn。syzygium guineense(Willd。)DC。3 2.38 2降低番红花桉树桉树Maidenii F.Muell。2 1.58 1下pentaphylacacea balthasaria schliebenii(梅尔奇)3 2.38 2较低的poaceae yushania yushania alpine 1 0.79 1下podocarparteae podocarpus podocarpus latifolius壁。3 2.38 2较低的蛋白质绒毛。Faurea Saligna Harv。24 19.04 11下低渣hagenia hagenia hagenia abyssinica(Bruce)J。F. 30 23.81 12下开胃斑唇裂。f。)1 0.79 1较低的dombeae dombea cav。 Dombea Torrida(J.F.Gmel。) 8 6.34 6中Ericaceae Erica L.Erica Arborea L.155 77.5 20中Ericaceaceae Agauria Agauria salicifolia(Comm。 EX 12 6 7中部超酸HyperCum HyperCum Revolutum Vahl。f。)1 0.79 1较低的dombeae dombea cav。Dombea Torrida(J.F.Gmel。) 8 6.34 6中Ericaceae Erica L.Erica Arborea L.155 77.5 20中Ericaceaceae Agauria Agauria salicifolia(Comm。 EX 12 6 7中部超酸HyperCum HyperCum Revolutum Vahl。Dombea Torrida(J.F.Gmel。)8 6.34 6中Ericaceae Erica L.Erica Arborea L.155 77.5 20中Ericaceaceae Agauria Agauria salicifolia(Comm。EX 12 6 7中部超酸HyperCum HyperCum Revolutum Vahl。17 8.5 9中proteaceae furaa harvFaurea Saligna Harv。14 7 7中间红斑科Hagenia hagenia hagenia hagenia abyssinca(Bruce)J。F. 2 1 2 ag =高度圆周,nos =物种的个体数量,%=物种百分比,np =数量=
桉树 (小果山桉) 是新南威尔士州 (PlantNET 2024) 接受的物种,属于桃金娘科,在系统发育上属于桉树亚属 Symphyomyrtus,Maidenaria 组,Globulares 系列;Nicolle 2024)。亨特和布鲁尔 (1999) 将其描述为“高达 30 米的乔木。树皮光滑,白色、黄色或乳白色,很少灰色,在高度不超过 1 米的幼树上没有或很少出现树皮。幼茎和小枝通常呈四边形。叶:幼苗叶卵形至椭圆形,长 3-10 厘米,宽 1-3.5 厘米,平,对生,顶端急尖至钝,基部圆形或±尾状,最初具柄,然后少数对无柄,同色;中间叶卵形至披针形,长 12-18 厘米,宽 3-6.5 厘米,近对生至互生,顶端急尖至渐尖,±钩状,基部圆形至±斜;成年叶披针形、镰形或±平,长 9.5-18 厘米,宽 1.2-2.2 厘米,互生,有明显的光泽和深色绿色,边缘全缘,顶端渐尖且常有钩,基部渐狭,急尖或斜,叶柄圆柱状至扁平状,上部微有沟壑,长1-2厘米;脉与中脉成30-45°角,缘内脉距边缘0.5-2毫米,中脉上部有沟壑。腋生伞形花序。每叶腋生花6-7朵;花梗长8-17毫米,宽2-5毫米;花梗在芽期和果期明显,芽期长3-5毫米,果期长2-4.5毫米;芽长球形至棍棒状,在缝合线的上下球状,±1肋,长6-9.5毫米;冠突尖状半球形,急倒锥形或±具喙,长2.5-5毫米,宽2-3.5毫米;托杯长2.5-5毫米,宽2-3.5毫米;花柱圆柱状,长3-4毫米;雄蕊花丝长3.5-5毫米,花药背着,平行,纵裂,长0.4-0.6毫米,白色,油腺圆形,背面。果杯状,具±1条棱,长4.5-8毫米,宽5-8毫米,常一侧裂开;果盘平至下降,宽约1毫米;裂爿3,±平。种子红棕色至黑色。子叶两裂。
1 B. Yashodeep药房的学生,1 B.药房2 Yashodeep Pharmacy Aurangabad,Maharashtra,印度马哈拉施特拉邦Yashodeep学院助理教授,巧克力是喜欢每个年龄段的人,但由于肥胖症,高血压,冠状动脉疾病,冠状动脉疾病,糖尿病等健康问题, 医生限制患者服用巧克力。 因此,目前的研究的目的是制定饮食中的巧克力保留健康状况,可以预防糖尿病,并使患者方便地吃巧克力。 guajava是同义词番石榴叶具有高水平的抗氧化剂和维生素,这也有助于降低血糖水平。 巧克力配方含有番石榴叶粉,黑巧克力,cocca黄油,咖啡,甜叶菊糖和评估的参数是一般外观,尺寸,硬度,盛开测试,确定药物含量,身体稳定性等。 关键字:抗糖尿病,巧克力,番石榴叶,桑树水果1。 引言糖尿病是一种慢性疾病,其由血糖水平快速升高(高血糖)的代谢疾病引起。 有不同类型的糖尿病是L型,2型和妊娠糖尿病。型1糖尿病是一种自身免疫性疾病,当人体对胰岛素有抗性,并且糖会产生inblood和gestational糖尿病时,会发生2型糖尿病,并在怀孕期间高糖。 胰岛素阻断胎盘产生的激素会导致这种类型的糖尿病。 番石榴叶(Guajava psidium guajava)属于mrtaceae Chemical家族,含有类胡萝卜素,多酚,Vit。 c,亚油酸。 2。1 B. Yashodeep药房的学生,1 B.药房2 Yashodeep Pharmacy Aurangabad,Maharashtra,印度马哈拉施特拉邦Yashodeep学院助理教授,巧克力是喜欢每个年龄段的人,但由于肥胖症,高血压,冠状动脉疾病,冠状动脉疾病,糖尿病等健康问题,医生限制患者服用巧克力。因此,目前的研究的目的是制定饮食中的巧克力保留健康状况,可以预防糖尿病,并使患者方便地吃巧克力。guajava是同义词番石榴叶具有高水平的抗氧化剂和维生素,这也有助于降低血糖水平。巧克力配方含有番石榴叶粉,黑巧克力,cocca黄油,咖啡,甜叶菊糖和评估的参数是一般外观,尺寸,硬度,盛开测试,确定药物含量,身体稳定性等。关键字:抗糖尿病,巧克力,番石榴叶,桑树水果1。引言糖尿病是一种慢性疾病,其由血糖水平快速升高(高血糖)的代谢疾病引起。有不同类型的糖尿病是L型,2型和妊娠糖尿病。型1糖尿病是一种自身免疫性疾病,当人体对胰岛素有抗性,并且糖会产生inblood和gestational糖尿病时,会发生2型糖尿病,并在怀孕期间高糖。胰岛素阻断胎盘产生的激素会导致这种类型的糖尿病。番石榴叶(Guajava psidium guajava)属于mrtaceae Chemical家族,含有类胡萝卜素,多酚,Vit。c,亚油酸。2。它用于炎症,糖尿病,高血压,缓解疼痛,发烧,腹泻,溃疡性风湿病。黑巧克力是抗氧化剂的强大来源,含有70%或高可口,有助于平衡血糖,改善血液流动和血压,减少心脏病,改善大脑功能。它还长期降低了糖尿病的风险。桑果(白色桑树)属于含亚油酸和棕榈酸的家族羊毛科化学品,它也有助于控制血糖水平,改善血液循环并促进肝脏健康。Guava叶子,黑巧克力和桑树果更有效地用作抗糖尿病,因此巧克力是巧克力的,因此巧克力是在哪种糖尿病患者可以享受的糖尿病患者可以享受的饮食和饮食。目的和客观目标 - 使用番石榴叶和桑果实对抗糖尿病巧克力的制定和评估。
1 Smolker, Rachel、Anne Petermann 和 Rachel Kijewski。2018 年。森林正处于危机之中,但生物技术并不是解决办法。The Hill。3 月 28 日。https://thehill.com/opinion/energy-environment/380363-the-forests-are-in-crisis-but-biotechnology-is-not-the-solution/ 2 Wilson, AK、JR Latham 和 RA Steinbrecher。2006 年。转基因植物中的转化诱导突变:分析和生物安全影响。生物技术和基因工程评论 23:209-237;Eckerstorfer MF、M. Dolezel、A. Heissenberger、M. Miklau、W. Reichenbecher、RA Steinbrecher 和 F. Waßmann。2019 年。欧盟对通过基因组编辑和其他新基因改造技术 (nGM) 开发的植物的生物安全考虑因素的看法。生物工程与生物技术前沿 7: 31;Tuladhar, R.、Yeu, Y.、Tyler Piazza, J. 等人,2019 年。基于 CRISPR-Cas9 的诱变经常引起靶向 mRNA 错误调节。自然通讯 10, 4056.;Li, J. 等人,2019 年。全基因组测序揭示 CRISPR/Cas9 编辑棉花植物中罕见的脱靶突变和大量固有遗传和/或体细胞克隆变异。植物生物技术杂志 17(5): 858–868;Wang, X.、M. Tu、Y. Wang 等人,2021 年。全基因组测序揭示 CRISPR/Cas9 编辑葡萄树中罕见的脱靶突变。园艺研究 8: 114。3 有关综述,请参阅 Kawall, K.、J. Cotter 和 C. Then。 2020. 扩大欧盟对农业基因组编辑技术的转基因风险评估。欧洲环境科学 32: 106。4 Commoner, Barry。2002. 揭开 DNA 神话:基因工程的虚假基础。哈珀斯杂志。2 月 1 日。https://grain.org/article/entries/375-unravelling-the- dna-myth 5 Wilson, A. 2021. 基因编辑作物和其他转基因作物会破坏可持续的粮食系统吗?Amir Kassam 和 Laila Kassam (eds.)。重新思考食品和农业。Woodhead Publishing。第 247-284 页。6 Benevenuto RF 等人。2017. 通过蛋白质组学和代谢组学分析确定转基因玉米对非生物胁迫的分子反应。PLoS ONE 12(2): e0173069。 7 Anthony, MA、Crowther, TW、van der Linde, S. 等人,2022 年。欧洲各地林木生长与菌根真菌组成和功能相关。ISME J 16,1327–1336。;Jacott, Catherine N.、Jeremy D. Murray 和 Christopher J. Ridout,2017 年。“丛枝菌根共生的权衡:抗病性、生长反应和作物育种前景”农学,7,第 4 期:75。;Lattuada 等人,2019 年。南里奥格兰德州内菌根与本地果树(桃金娘科)之间的相互作用。植物科学 29(4):1726-1738 8 Nguyen, HT 和 JA Jehle。 2007. 转基因玉米 Mon810 中 Cry1Ab 的季节性和组织特异性表达的定量分析。《植物疾病与保护杂志》114(2): 82-87;Lorch, A. 和 C. Then。2007. 转基因 MON810 玉米植株实际上会产生多少 Bt 毒素?绿色和平组织。https://www.testbiotech。org/sites/default/files/How%20much%20Bt%20toxin%20produced%20in%20 MON810_Greenpeace.pdf 9 Miller, ZD 等人。2019 年。为增加密度而改良的转基因火炬松 (Pinus taeda L.) 的解剖、物理和机械特性。木材和纤维科学 51(2): 1-10。 10 美国国家科学、工程和医学院。2019 年。森林健康和生物技术:可能性和注意事项。华盛顿特区:美国国家科学院出版社,第 94 页。 11 加拿大生物技术行动网络 (2022) 《全球转基因树木发展现状》www.cban.ca/globalstatus2020
