本综述旨在分析一氧化二氮在太空推进中所有可能的应用。在概述其主要的物理和热性质之后,总结了 N 2 O 的分解行为,强调了催化剂对促进反应的重要性。报告了其作为绿色推进剂在单推进剂系统中的应用,并与过氧化氢作为肼的可能替代品进行了比较。报告了其作为液体双推进剂系统中的氧化剂的行为和性能,其中将其与不同的碳氢化合物结合以了解与 H 2 O 2 相比,它是否是肼衍生物和四氧化二氮的高毒性组合的合适的绿色替代品。最后,概述了 N 2 O 在混合火箭发动机中的不同应用,重点介绍了不同颗粒组合之间的回归率和燃烧性能的差异。
化石燃料对这些活性的燃烧产生各种温室气体的排放,包括二氧化碳(CO 2),甲烷(CH 4)和一氧化二氮(N 2 O)。这些活性还会产生其他空气污染物,例如一氧化碳(CO),氮(NO X)的氧化物,非甲烷挥发性有机化合物(NMVOC),颗粒物和二氧化硫(SO 2)。尽管这些气体不是直接的温室气体,但有些气体(CO,NO X,NMVOC)确实有助于气候变化。此外,该来源的许多排放研究都集中在这些污染物上,这些污染物是针对减少的(IMO测量,附件1)。作者认为,合并这项重要和相关的研究的附加价值提供了足够的理由,可以将这些气体包括在讨论中。
长期以来,人类驱动的(人为)温室气体排放量的增加已被确定为全球变暖及其后果的原因。为了解决这个问题,社会必须最大程度地减少各个部门的排放,并专注于循环系统以避免过度利用资源。然而,随着气候变化的意识的增长,人们对一氧化二氮(N 2 O)的注意力增加了,这是一种有效的温室气体。在这种情况下,一个必不可少的部门是废水处理,据信这占N 2 O的人为排放的3%。伴随废水处理厂(WWTP)在提供清洁水和保护我们的湖泊和海洋方面发挥了至关重要的作用,现在他们的任务是重要的。WWTP需要最大程度地减少其温室气体,同时确保良好的水质,并探索优化或重用的营养,水和能量的可能性,以帮助提供可持续的未来以及气候变化。
摘要。基于清晰收获,现场制备,播种和中间稀疏的旋转林业通常是Fennoscan-dia的主要管理方法。然而,清除切割后对温室气体(GHG)排放的理解仍然有限,特别是在排水的泥炭地森林中。在这项研究中,我们报告了二氧化碳(CO 2),甲烷(CH 4)和一氧化二氮(N 2 O)的基于涡流的(基于EC的)净排放,该释放的北谷植物林中的肥沃盐水收获后1年1年。我们的结果表明,在年度上,该站点是净CO 2来源。CO 2排放主导着年度温室气体余额(23.3 T CO 2等式ha -1 yr -1,22.4-24.1 t co 2 eq。ha-1 yr-1,取决于EC间隙填充方法;总计82.0%),而n 2 o的作用(5.0 t co 2 eq。ha -1 yr -1,4.9-5.1 t co 2 eq。ha -1 yr -1; 17.6%)也很重要。该站点是一个弱的CH 4来源(0.1 T CO 2 eq。ha -1 yr -1,0.1-0.1 t co 2 eq。ha -1 yr -1; 0.4%)。开发了一个统计模型,以估计表面型CH 4和N 2 O排放。该模型基于空气温度,土壤水分和Ec ec ec ec toper toper typer的贡献。使用未占用的飞机(UAV)光谱成像和机器学习对表面类型进行了分类。我们的研究提供了有关CH 4和N 2 o频道如何受到基于表面上的模型,表面型特异性最高的CH 4散发出现在植物覆盖的沟渠和裸露的泥炭中,而表面则以活树,死木,垃圾,垃圾,暴露的泥炭为主导,是N 2 O发射的主要贡献者。
摘要:细菌反硝化是土壤N 2 O水槽的主要途径,这对于评估和控制N 2 O排放至关重要。生物基多羟基烷烃(PHA)微塑料颗粒(MPS)在常规环境中缓慢降解,持续惰性持续时间。然而,在降解之前,PHA微塑料老化对细菌n 2 O下沉量的影响仍然很少。在这里,土壤模型菌株denitrificans暴露于0.05-0.5%(w/w)的Virgin和老年PHA MPS。尽管没有观察到分子量的显着变化,但老化的PHA MPS阻碍了细胞的生长和n 2 O的降低率,导致N 2 O排放的激增。1 h NMR光谱和UPLC-QTOF-MS分析确定γ-丁洛洛洛酮是从老年PHA MPS释放的关键成分。在细胞水平上的代谢验证证实了其对N 2 O水槽和ATP合成的抑制作用。在周围自发质子化和水解的γ-丁龙酮将与ATPase的质子竞争,并破坏硝化电子转移和氧化磷酸化之间的耦合。因此,能量缺陷的细胞减少了降低n 2 o的电子供应,这并不有助于节能。这项工作揭示了一种新型机制,通过这种机制,PHA微塑性衰老会损害细菌N 2 O下沉,并突出了考虑生物基型微塑性衰老带来的环境风险的需求。关键字:多羟基烷酸盐,生物塑性衰老,细菌反硝化,n 2 o下水道,能量代谢,γ-丁酸苯二甲酸,denitrificans
摘要:为了解决氧化亚氮 (N2O) 排放量变化带来的不确定性,建模方法应运而生,成为研究两种排放过程(即硝化和反硝化)以及表征土壤、大气和作物之间相互关联动态的有效方法。本研究对广泛使用的在不同种植制度和管理措施下模拟氧化亚氮 (N2O) 的模型进行了全面概述。我们选择了基于过程的模型,优先考虑那些在近期发表的科学论文中已有完善算法记录或已发布源代码的模型。我们回顾并比较了用于模拟氧化亚氮 (N2O) 排放量的算法,并采用了统一的符号系统。选定的模型(APSIM、ARMOSA、CERES-EGC、CROPSYST、CoupModel、DAYCENT、DNDC、DSSAT、EPIC、SPACSYS 和 STICS)根据其硝化和反硝化过程建模方法进行分类,区分了对微生物库的隐式或显式考虑,并根据这些过程的主要环境驱动因素(土壤氮浓度、温度、湿度和酸度)的形式化进行分类。此外,还讨论了模型的设置和性能评估。通过对这些方法的评估,我们发现土壤化学-物理性质和气候条件是氮循环及其导致的气体排放的主要驱动因素。
一氧化二氮(N 2 O)从废水处理厂的排放量,具有变暖的潜力为12 298倍,这是CO 2的降低,对降低其碳足迹构成了重大挑战。当前的13个缓解策略着重于限制氮化和反硝化过程中的n 2 o形成14,但忽略了微生物还原机制。这项研究研究了15种增强一氧化二氮还原酶(NOSZ)活性的潜力,以降低N 2 O至N 2。我们假设16个战略氧操作可以通过连续的NOSZ表达17增强n 2 O的破坏,并在具有优质NOSZ功能的微生物中实现NOSZ激活。我们使用宏基因组学和19种元蛋白质组学评估18个微生物群落功能和代谢调节,以阐明间歇性曝气方案对N 2 O排放的影响。20与周期性缺氧暴露的间歇性充气通过增强菌只菌的代谢活性,从而显着降低了N 2 O的排放,并清除21 71%的氮。nosz 22的活性在系统适应氧气调节后增加了4至6.5倍,将23次与没有缺氧相的连续氧氧化循环相比。后者导致24 N 2 O排放量增加,这是由于NOSZ活性抑制的25甲基杆菌的产生,而N 2 O的产生增加,该甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基的排放量增加了。我们的发现,26个战略氧气操纵可以为N 2 O的破坏提供能量,为27种开发下一代废水处理技术奠定了基础,以减轻N 2 O排放。28
*长期至中期泄漏的风险(从“产品”和/或“添加剂”和/或“包装”中污染的风险);陆地或海洋农业生态系统的碳和/或营养损失;改变海洋中的氧气水平;对废物部门的影响;关于废物/生物量沉积的国家法规/法律;确保在生产系统中计算生物量和与生产相关的温室气体的损失;双重计数(类似于HWP)的国际贸易和潜在问题;验证:如果海洋可能是可行的,则在陆地上应有可能。
耕种土壤主要由N 2 O排放造成全球变暖,并且证明很难缓解。然而,一种具有令人鼓舞的新方法在实验室中,利用有机废物作为N 2 O-令人反感细菌(NRB)菌株的底物和向量,以其在土壤中生存的能力而被选中。在这里,我们在现场实验中证明了强大的作用:产生沼气产生的废物,其中菌株cloacibacterium sp。CB-01在有氧运动中生长到〜6*10 9细胞ML -1,将N 2 O-排放降低了50-95%。CB-01的强大而持久的作用归因于其在土壤中的坚韧性,而不是其生物动力学参数,该参数不如其他NRB量。扩展到欧盟水平,我们发现国家人为n 2 O-发射可以降低5-20%,如果包括其他有机废物,则可以降低更多。这为目前缺乏其他缓解措施的N 2 O排放量开辟了一条途径。
政策和市场激励措施正在迅速扩大,以促进全球农田中的土壤有机碳(SOC)隔离。证据表明,SOC的长期增加可以影响作物产量和氮(N)肥料的要求,并有可能帮助应对两个重要的可持续性挑战。但是,SOC的增加也可能触发较高的土壤一氧化二氮(N 2 O)排放,这将代表缓解气候变化的重要权衡。我们检验了以下假设:SOC的长期增加与较高的农作物产量和肥料n使用效率(NUE)有关,但以较高的N 2 O排放为代价。小麦在三个n肥料速率(0、100和200 kg n ha -1)中种植在两种土壤(SOC低和SOC高)中,并在中菌实验中生长。从22年的野外实验中获得了(0 - 25厘米),并在加利福尼亚州的杂物中获得了土壤。结果表明,SOC低于SOC的总生物量和谷物产量高于100 kg n ha -1,而不是其他n个水平。在200 kg n ha -1时SOC低的作物N摄取也高28%,从而导致整体NUE更高。与SOC低相比,SOC高25 - 112%的SOC 土壤N 2 O排放量增加了,这可能是由于不稳定C和N池的长期变化,微生物活性以及影响孔隙率和气体扩散的土壤结构。 虽然在农业土壤中增强SOC的作物和环境益处有充分记录,但这项研究的结果表明,应考虑应考虑土壤N 2 O排放的变化以准确确定净GHG净排放量。土壤N 2 O排放量增加了,这可能是由于不稳定C和N池的长期变化,微生物活性以及影响孔隙率和气体扩散的土壤结构。虽然在农业土壤中增强SOC的作物和环境益处有充分记录,但这项研究的结果表明,应考虑应考虑土壤N 2 O排放的变化以准确确定净GHG净排放量。
