摘要:通过螺旋桨设计方法与粒子群优化 (PSO) 相结合,开发了一种降低螺旋桨驱动飞机能耗的航空结构算法。优化过程中考虑了多种螺旋桨参数,包括每个螺旋桨截面的翼型几何形状。螺旋桨性能预测工具采用收敛改进的叶片元素动量理论,该理论由从 XFOIL 和经过验证的 OpenFOAM 获得的翼型气动特性提供。根据实验 NACA 4 位数据估计失速角校正,并在出现收敛问题时使用。对气动数据进行校正以考虑压缩性、三维、粘性和雷诺数效应。根据实验数据拟合提出了旋转校正系数。采用基于欧拉-伯努利梁理论的结构模型,并根据有限元分析对其进行验证,同时讨论了离心力的影响。进行了一个案例研究,将弦长和螺距分布与涡流理论的最小损失分布进行了比较。使用印刷螺旋桨进行风洞试验,以得出整个程序的可行性以及 XFOIL 和 CFD 最佳螺旋桨之间的差异。最后,将最佳 CFD 螺旋桨与具有相同直径、螺距和运行条件的商用螺旋桨进行比较,显示出更高的推力和效率。
美国国家航空航天局及其前身国家航空咨询委员会 (NACA) 自 1920 年以来一直致力于开发超音速巡航飞行所需的技术。前期工作主要集中在开发基本的测试设施和方法,以便研究超音速问题。与此同时,还开展了研究,以确定超音速飞行的飞机和推进概念。这些早期研究促进了美国空军/海军/贝尔 XS-1 联合飞机的开发,该飞机于 1947 年由空军上尉查尔斯·E·“查克”·耶格尔驾驶,成功完成了首次超音速飞行。1956 年至 1971 年间,美国空军超音速 B-70 和商用超音速运输概念得到了强有力的研究支持。由于技术和政治问题,这两个项目均未生产出飞机,NASA 被赋予了为可行的超音速巡航飞机建立技术基础的责任。后一项努力被称为 NASA 超音速巡航研究 (SCR) 计划,于 1971 年至 1981 年间进行。NASA 可变循环发动机 (VCE) 计划是 SCR 的一个推进分支,于 1976 年至 1981 年间进行。SCR 计划对于 NASA 涉及内部和承包商参与的计划来说有些不寻常。几家制造商提供了公司人力和资金来增强 NASA
OMB批准号 1559-0027文书工作负担声明:根据修订后的《简报法》,除非显示有效的管理和预算办公室(OMB)批准编号,否则任何人都不需要响应信息集合。 此表格的批准号为1559-0046。 该信息收集的公开报告负担估计为每个响应平均20小时,包括审查说明的时间,搜索现有数据源,收集和维护所需的数据以及完成和审查信息的收集。 向社区发展金融机构基金会(Community Development Financial Instructions Fund)发送有关此信息集合的负担估算或此信息收集的任何其他方面的评论,包括减轻此负担 信息自由法(FOIA)声明:CDFI基金不会发布CDFI的专有或机密信息作为一般实践。 但是,CDFI在年度CDFI/NACA/RRP金融奖励收件人交易水平报告(TLR)或与TLR相关的其他报告(例如,TLR快照报告)的任何信息均受《信息自由法》(FOIA)(FOIA)(FOIA)(5 U.S.C.OMB批准号1559-0027文书工作负担声明:根据修订后的《简报法》,除非显示有效的管理和预算办公室(OMB)批准编号,否则任何人都不需要响应信息集合。此表格的批准号为1559-0046。该信息收集的公开报告负担估计为每个响应平均20小时,包括审查说明的时间,搜索现有数据源,收集和维护所需的数据以及完成和审查信息的收集。向社区发展金融机构基金会(Community Development Financial Instructions Fund)发送有关此信息集合的负担估算或此信息收集的任何其他方面的评论,包括减轻此负担信息自由法(FOIA)声明:CDFI基金不会发布CDFI的专有或机密信息作为一般实践。但是,CDFI在年度CDFI/NACA/RRP金融奖励收件人交易水平报告(TLR)或与TLR相关的其他报告(例如,TLR快照报告)的任何信息均受《信息自由法》(FOIA)(FOIA)(FOIA)(5 U.S.C.552)和其他联邦法律法规。本集中包含的任何信息,包括任何附件或补品,都会出于执法目的向执法机构披露。一般而言,Foia使联邦机构的记录可向公众使用,除非豁免所请求的信息。CDFI提交的商业秘密以及商业或财务信息可以根据FOIA免除披露。CDFI的法律顾问应就此事进行进一步的指导。CDFI基金保留发布对报告过程中提供的问题的回答的权利。根据要求,CDFI基金可以提供收集的信息以及接收者提交的任何相关报告,向适当的联邦,州,部落,地方,国际,国际或外国执法机构或其他适当的机构,或其他适当的机构调查或起诉违法或强制执行或执行或执行或执行法律,规则,法规或命令。
A DR 药物不良反应 APIN APIN 公共卫生倡议 AHF 艾滋病医疗基金会 艾滋病获得性免疫缺陷综合征 ARFH 生殖与家庭健康协会 ART 抗逆转录病毒疗法 CCM-尼日利亚国家协调机制-尼日利亚 CDC 疾病控制和预防中心 CHW 社区卫生工作者 CIHP 综合健康计划中心 DOD 国防部 DOTS 直接观察治疗短期课程 DSD 差异化服务提供模式 FCT 联邦首都特区 FGD 焦点小组讨论 FHI 360 家庭健康国际 FMOH 联邦卫生部 HCW 卫生保健工作者 HIV 人类免疫缺陷病毒 IHVN 尼日利亚人类病毒学研究所 IPT 异烟肼预防疗法 KNCV KNCV 尼日利亚结核病基金会 LGA 地方政府区域 LTBI 潜伏性结核感染 MMD 多月配药 NACA 国家艾滋病控制机构 NASCP 国家艾滋病毒/艾滋病和性传播感染控制计划 NSP 国家战略计划 NTBLCP 国家结核病、麻风病和布鲁里溃疡控制计划 PLHIV 艾滋病毒感染者/艾滋病患者 TB/HIV 结核病/艾滋病毒合并感染 TPT 结核病预防治疗 UNHLM 联合国高级别会议 UNAIDS 联合国艾滋病规划署 USAID 美国国际开发署 WHO 世界卫生组织
兰利纪念航空实验室成立于 1917 年,是美国第一家民用航空研究实验室,隶属于美国国家航空咨询委员会 (NACA)。该实验室的主要任务是发现和解决飞行问题,它利用大量风洞、实验室设备和飞行研究飞机来构思和完善新的航空概念,并为飞机设计中的关键技术学科提供数据库和设计方法。第二次世界大战 (WWII) 之前,兰利对翼型、飞机结构、发动机罩和冷却、阵风减缓和飞行品质等各种主题的研究在民用航空界广泛传播,这些技术在民用飞机上的应用也很常见。然而,在二战期间,兰利的设施和人员必然专注于支持国家的军事行动。第二次世界大战后,高速飞行的挑战以及高速飞机配置在相对较低的速度下(例如起飞和降落时)所表现出的相关问题刺激了兰利的航空研究。兰利当时的大部分研究最终都对民用和军用航空业都有用。随着 1958 年新成立的国家航空航天局 (NASA) 的出现,兰利保留了其在航空研究中的重要作用,并作为 NASA 兰利研究中心、艾姆斯研究中心、刘易斯研究中心(现为格伦研究中心)和德莱顿飞行研究中心占据领先地位。
Dean F. M. Feiker,NRC 工程与工业研究部主席;Clyde,委员会主席。工程与材料 V 11.Schnee,结构委员会主席;Finn Jonassen,结构委员会研究协调员;C. i’.Sims,研究员,研究项目 SR-t37;H. Bania,研究员,研究项目 SR-@ A. L. [!alters,研究员,研究项目 SR.-87;A. i300dioe~g,研究员,研究项目 SR-9Z;W. H. Bruckner,研究员,研究项目 SR-93 i。 Paul DeCarmo,研究员,研究项目 SR-92 k!.Gensamer,研究员,研究项目 SR-96 R. A. Hechtman,研究员,研究项目。:ctSR-93 S. C. Hollister,研究员,研究项目 Sld-@ C. H. Lorig,研究员,研究项目 SR-97 Albert Muller。研究员。研究项目 SR-25 O IBrien;技术负责人,研究项目 $R-92 Parker,调查或研究项目 SR-92 Dilson,研究员,研究项目 SR-93 Barren,卡内基-伊利诺伊钢铁公司 Y.ewmark,伊利诺伊大学工程学院,斯沃斯莫尔学院工程系 ‘atson.Lukens Steel Conmanv Cop;,No.82 -.副本号83 - 文件“副本,船舶建造委员会副本 84 至 88 - 国会图书馆通过船舶局,代码 330c 副本 l?o.89 - NACA,材料研究协调委员会,USN
美国护理学院协会 (AACN) 美国大学注册和招生官员协会 美国学生政府协会 (ASGA) 本笃会学院和大学协会 (ABCU) 天主教学院和大学协会 大学理事会协会 高等教育家长/家庭计划专业人员协会 (AHEPPP) 宾夕法尼亚州独立学院和大学协会 高等教育定位、过渡和保留协会 (NODA) 天主教学院和大学学生事务协会 (ASACCU) C-Cue, Inc.(本科教育计算机联盟) 天主教校园事工协会 (CCMA) 大学乐队指挥全国协会 (CBDNA) 大学理事会 CFP 认证 宾夕法尼亚州大学合作教育协会 教育促进与支持委员会 (CASE) 独立学院委员会 国际教育交流委员会 (CIEE) 学术联盟 六西格玛认证委员会 威斯特摩兰县大经济增长联盟拉特罗布-劳雷尔谷商会 劳雷尔高地公司 国际教育研究所 国际学生交流计划 (ISEP) 利格尼尔谷商会 中大西洋工商管理学院协会 中部各州大学注册和招生官员协会 全国国际教育工作者协会 (NAFSA) 全国校园活动协会 (NACA) 全国大学招生顾问协会 全国大学和大学商务官员协会 全国大学和雇主协会 (NACE) 全国独立学院和大学协会 全国学生财务援助管理员协会 全国天主教教育协会
美国宇航局刘易斯研究中心的主要职责是研究和开发飞机和航天器的推进和动力系统。该职责比美国宇航局成立早很多年,实际上可以追溯到 1941 年,当时兰利实验室的一个小组搬到克利夫兰,建立了国家航空咨询委员会的航空发动机研究实验室,这是美国宇航局的前身。有了这样的历史背景,我们从应用的角度看待我们的大部分研究,以应用于新的或改进的推进和动力概念和系统,也就不足为奇了。正是这种观点导致了我们在本次会议上讨论的大部分研究和技术。这项研究针对的一些推进和动力概念距离应用还很遥远,有些可能被证明是不可行的。但是,除非对这些概念进行一些研究,否则我们无法发现这些概念的真正问题和局限性。确定推进概念的可行性确实是刘易斯的主要职责。在 20 世纪 40 年代和 50 年代初期,该中心的大部分活动涉及航空发动机,主要是涡轮喷气发动机及其相关部件。研究了它们在所有速度范围内的任务。这些系统、部件和任务研究的结果定期以会议的形式提交给航空工业、相关大学和军队。在过去的十年中,此类会议断断续续地持续着。这次会议是新系列会议之一,将以浓缩和总结的形式介绍我们在刘易斯活动几个领域的观点和研究成果。在 NACA 时期,刘易斯正在研究其他推进概念(除涡轮喷气发动机外),例如冲压喷气发动机、高能化学火箭和核动力航空发动机,以及任务和应用研究。一些关于核能用于涡轮喷气发动机、冲压喷气发动机和火箭的评估研究可以追溯到 1946 年。随着 1947 年中期对导弹的重视程度不断提高,刘易斯中心开始研究其他推进概念(除涡轮喷气发动机外),例如冲压喷气发动机、高能化学火箭和核动力航空发动机,以及任务和应用研究。一些关于核能用于涡轮喷气发动机、冲压喷气发动机和火箭的评估研究可以追溯到 1946 年。
1. 序言 20 世纪上半叶,高输出飞机活塞发动机的发展代表了机械工程领域的巅峰。没有任何一种机械装置像那个时期一样,推动了其各个学科的发展;此后也没有任何一种机械装置能像那个时期一样,推动了其各个学科的发展。在动力飞行时代初期,活塞发动机无法胜任这项任务,需要付出巨大的开发努力才能满足越来越大、越来越快的飞机的需求。在其发展过程中,两次世界大战的巧合大大增加了这种努力,但也意味着政府为发动机开发的各个方面提供了巨大的支持,从而推动了机械工程领域大多数学科的发展。这些进步是发动机公司、政府机构和大学开展工作的成果。我自己的机械工程师生涯来得太晚,没有专业涉足飞机活塞发动机,但我几乎只参与了多种类型的发动机,并不局限于某一特定学科。我认为我早年在父亲管理的小型机场接触飞机的经历,以及对驻扎在附近、配备六台二十八缸发动机的巨型战略空军司令部轰炸机的密切观察,对我后来对这些发动机的兴趣产生了一定影响,但最主要的催化剂是与某些 p
摘要 在航空航天工程中,计算流体动力学 (CFD) 领域研究飞机的空气动力学行为。目前用于执行 CFD 模拟的是飞机的计算机辅助设计 (CAD) 模型,这些模型通常是低细节的工业设计模型。研究改进模拟过程结果的新方法非常重要。可以在此方向上测试的一种方法是创建用于 CFD 的实际飞机的更详细模型。这种模型可以通过逆向工程技术构建。在众多可用方法中,激光扫描最适合这样的项目。这是因为激光扫描具有在短时间内以高精度获取大量物体点的优势。代尔夫特理工大学拥有开展此类项目的必要资源。对代尔夫特理工大学航空航天工程学院的一架用于教学和科学目的的 Cessna Citation II 进行了测量。还提供这架飞机的 CAD 设计模型。此外,代尔夫特理工大学的光学和激光遥感系还提供了一台 Z+F Imager 5003 激光扫描仪。这是一款相位扫描仪,每秒可以轻松捕获 120,000 个 X、Y 和 Z 坐标点。测量在一天之内在 Schiphol East 的机库中进行,Cessna 就位于那里。所选的测量设置使用了 12 个扫描位置,这些位置“su