沸石是一种具有三维晶体结构的微孔铝硅酸盐矿物,其具有规则排列的大型开放空腔,形成笼状和通道。空腔由沸石的结构组成1,2)组成。它们的骨架由(SiO 4 ) 4-和(AlO 4 ) 5-四面体组成,两者都可以构建由单环4-、6-和8-,或双环4-4、6-6和8-8或支环4-1、5-1等组成的二级结构单元3)。骨架结构类型将决定表面积、孔径和孔隙率4)。与其他矿物相比,沸石具有多种优势,尤其是其作为离子交换剂、催化剂和吸附剂的功能。印度尼西亚四面环海,火山环纵横交错,具有丰富的天然沸石矿物资源 5, 6) 。沸石可用作催化剂、离子交换和吸附剂 6) 。一般而言,沸石矿物具有以下化学式 7) :
摘要:这项研究使用了电力动力学极化曲线的测量,电化学障碍光谱(EIS)和量子化学计算来检查硫酸和咖啡因在硫酸硫酸硫酸中硫酸腐蚀的抑制性和吸附性能(H 2 SO 4)溶液(H 2 So 4)溶液。获得的结果表明,在0.5 m H 2 SO 4溶液中,Linalool比咖啡因比咖啡因更有效。电位动力学极化曲线表明,Linalool充当混合型抑制剂,而咖啡因是0.5 m H H 2 SO SO 4溶液中低调钢的阳极型抑制剂。根据阻抗测量值,腐蚀机制发生在激活控制下。理论拟合也用于评估包括Langmuir,Flory-Huggins和动力学模型在内的各种吸附等温线。。这两种抑制剂都通过碳钢表面的物理吸附机制作用。但是,它们的吸附过程是一个非理想的过程。量子化学参数被计算并解释。
摘要:Passiflora edulis f. flavicarpa(黄色西番莲)是一种高价值热带作物,既可作为水果,也可作为营养品销售。随着美国水果产量的上升,必须研究盐度在半干旱气候下对作物的影响。我们评估了灌溉水盐度、叶龄和干燥方法对叶片抗氧化能力 (LAC) 和植物遗传反应的影响。植物在室外蒸渗仪槽中生长三年,水的电导率分别为 3.0、6.0 和 12.0 dS m − 1。Na 和 Cl 均随着盐度的增加而显著增加;3.0 和 6.0 dS m − 1 下的叶片生物量相似,但在 12.0 dS m − 1 下显著降低。盐度对 LAC 没有影响,但新叶的 LAC 高于老叶。低温烘干 (LTO) 和冷冻干燥 (FD) 的叶子具有相同的 LAC。对十二种转运蛋白基因(其中六个参与 Na + 转运,六个参与 Cl − 转运)的分析表明,根部的表达量高于叶子中的表达量,这表明根部在离子转运和控制叶子盐浓度方面起着关键作用。百香果对盐度的中等耐受性和其高叶子抗氧化能力使其成为加利福尼亚州的潜在新水果作物,也是营养保健品市场的黄酮类化合物的丰富来源。低温烘干是冷冻干燥的潜在替代方案,可用于准备百香果叶子的氧自由基吸收能力 (ORAC) 分析。
摘要:背景:诊断新生儿和幼儿的烙印缺陷提出了挑战,通常需要进行分子分析以进行确定的诊断。遗传物质与口腔拭子的隔离变得至关重要,尤其是在收集血液样本不切实际或易受伤害的新生儿(如新生儿)的情况下,他们的血量有限,并且对于侵入性手术而言通常太脆弱了。口头拭子样品作为DNA的极好来源,有效地克服了与罕见疾病相关的障碍。方法:在我们的研究中,我们专门解决了使用NACL程序从口服拭子样品中提取的DNA的质量和数量的确定。结果:我们将这些结果与使用商业试剂盒进行的提取进行了比较。随后,获得的材料对与诸如Prader -Willi和Angelman综合症等烙印相关的基因座进行了MS -HRM分析。结论:我们的研究强调了口头拭子样品的重要性,作为获得MS – HRM分析DNA的可靠来源。NaCl提取是一种实用且具有成本效益的方法,用于遗传研究,这有助于分子诊断,这证明对面临表征延迟的患者特别有益,最终影响了他们的治疗。
01 NaCl 200mg/L,压力80 PSI,温度25℃,pH 6.0-7.0,恢复30%02 NaCl 200mg/l,压力60 psi,温度25℃,pH 6.0-7.0,恢复15%03 NaCl 200mg/l,压力为80 psi,压力80 PSI,温度25 ph 6.0-7.0-7.0-7.0-7.0,回收40%,
2 溶液计算的解决方案 1) D5W 溶液 (5% 葡萄糖,葡萄糖 = 葡萄糖) 葡萄糖的分子量 = 180。 任何计算问题中都会提供此信息。 ① 将百分比转换为摩尔浓度:5% 葡萄糖溶液。5g 葡萄糖 x 1000 毫升 x 1 摩尔葡萄糖 = 0.278 摩尔/升,或 0.278 M 葡萄糖溶液。100 毫升 1.0 升 180g 葡萄糖 ② 将摩尔浓度转换为渗透压:问自己,当这种物质溶解在水中时会产生多少粒子。对于葡萄糖,虽然它可溶于水,但即使溶于水,它也不会在水中电离,因此葡萄糖溶液的摩尔浓度等于溶液的渗透压。0.278 M 葡萄糖 = 0.278 OsM 葡萄糖溶液。 ③ 将OsM换算为mOsM,并说明溶液的渗透压:将OsM乘以1000,换算为mOsM(毫渗透压)。因此,0.278 OsM葡萄糖x 1000 = 278 mOsM葡萄糖溶液。该溶液低于体液等渗范围295至310 mOsM,因此该溶液为低渗性,细胞在这种溶液中会肿胀并裂解。2)盐溶液(1.3%NaCl)NaCl的分子量= 58.5。①将%换算为摩尔浓度:1.3%NaCl溶液。1.3g葡萄糖x 1000 ml x 1摩尔NaCl = 0.222摩尔/升,或0.222 M NaCl溶液。 100 毫升 1.0 升 58.5 克 NaCl ② 将摩尔浓度转换为渗透压:问问自己,当这种物质溶解在水中时会产生多少粒子。氯化钠 NaCl 是一种具有离子键的盐,因此在溶液中电离形成两个粒子 Na + 和 Cl - 。这意味着渗透压 NaCl 是 NaCl 溶液摩尔浓度的 2 倍。
这项研究旨在确定生物代理(Trichoderma hazianum)的好处,以减轻NaCl应力对日期棕榈分支的不利影响(Phoenix dactylifera L.)氯化钠(NaCl)不同浓度的浓度(NaCl)(NACL)(NaCl)(0、5、10、15、20、20、20、20、20和25 ds M -1)与颜色相关的颜色效果上的颜色是相互影响的。在存在和不存在生物代表t. harzainum的情况下,酶,总脯氨酸,总酚类和过氧化氢分支。研究的结果表明,从10-20 ds m -1中提高NaCl浓度并不影响马铃薯葡萄糖琼脂(PDA)培养基中Harzianum的菌丝生长菌落。结果表明,光合色素(叶绿素和类胡萝卜素),过氧化物酶和过氧化氢酶的水平显着增加,蛋白质酶的总脯氨酸和总酚含量在日期棕榈中的分支中使用T. harzainum的应用。较高浓度的NaCl导致更高水平的氢过氧化。此外,盐刺激了抗氧化酶(例如过氧化酶和过氧化物酶)的产生。该研究表明,施用生物代理t. harzianum后,盐胁迫对日期棕榈分支的负生理和生化作用显着降低。这项研究表明,trichoderma具有促进植物生长的能力,可用于增加NACL应力条件下棕榈分支的生长。
57 gm蔗糖3.1克MGC12.6H2O 0.6 gm Tris。HCl 500毫升高压灭菌D.D.H2O用0.1 N HCl调整pH 7.5。如果在冰箱中储存1周,该溶液是稳定的。EDTA:0.72 gm disodium edta 250 ml高压灭菌D.D.H20在室温EDTA处使用0.1 N Na0h存储在7.5处的pH抑制DNase酶的作用,使核膜的裂解更加容易。 SDS:25克十二烷基硫酸钠(SDS)250 ml D.D. 高压灭菌的H2O在室温SDS下将2克SDS溶解在20 mL H2O存储中,乳化了血浆和核膜。 2 M NaCl 29.2 gm NaCl 250 ml高压灭菌D.D. H20存储在室温下。 NaCl增加离子浓度,这破坏了DNA和蛋白质之间的离子键。H20在室温EDTA处使用0.1 N Na0h存储在7.5处的pH抑制DNase酶的作用,使核膜的裂解更加容易。SDS:25克十二烷基硫酸钠(SDS)250 ml D.D.高压灭菌的H2O在室温SDS下将2克SDS溶解在20 mL H2O存储中,乳化了血浆和核膜。2 M NaCl 29.2 gm NaCl 250 ml高压灭菌D.D.H20存储在室温下。 NaCl增加离子浓度,这破坏了DNA和蛋白质之间的离子键。H20存储在室温下。NaCl增加离子浓度,这破坏了DNA和蛋白质之间的离子键。
摘要现在的电能存储很重要,因为它受人力需求的增加影响,并且电池是正在开发的储能。此外,计划用钠离子电池和丰富的钠元素及其经济价格与锂相比,将锂离子蝙蝠teries切换为主要点。主组件阳极和阴极对钠电池性能具有重大影响。本评论简要描述了钠电池的组件,包括阳极,阴极,电解质,粘合剂和分离器,而钠原材料的来源对于材料合成或安装最重要。海盐或NACL具有潜在的能力作为钠电池阴极的原材料,并且在阴极合成过程中使用海盐的使用可以降低生产成本,因为盐也非常丰富且环保。使用Na 2 Co 3的阴极(由NaCl独立于NaCl合成)后可以节省约16.66%的16.66%,并且用NaCl独立合成后可以用NaCl合成钠金属,因为计算后可以节省约98%,因为钠金属被归类为昂贵的问题。
NUTRIENT LEVEL Crude protein, min.........................................................17.00% This includes not more than 1% equivalent crude protein from non-protein nitrogen.粗脂肪,最小........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... max...........................................................1.50% Phosphorous (P), min......................................................0.40% Salt (NaCl), min................................................................0.25% Salt (NaCl), max...............................................................0.75% Sodium (Na), max .....................................................................................................................................................................................................................................................................................................................................................................................................................最小........................................................................................................................................................................................................................................................................................................................................................