使用碳酸钠(NACLO 4)基于琼脂 - 阿加尔(NACLO 4)的生物聚合物电解质膜的开发,使用乙烯碳酸乙酯(EC)作为原发性Na-Ion Battery S. Sowmiya a,*,*,C。Shanthi A,S.Selvasekarapandian B,C. S. Selvasekarapandian B,C a s. s. selvasekarapandian b,c a s。印度NADU,B材料研究中心,Coimbatore 641045,印度泰米尔纳德邦Bharathiar University,Coimbatore 641046,印度泰米尔纳德邦,印度泰米尔纳德邦641046,当前的研究调查了乙烯碳酸盐(EC)碳酸盐(EC)综合perch perch perch perch perch perch perch perch and agar-agar-agar-agar-agar-agar-agar-agar-agar-agar-agar-agar-agar-sod.采用便捷的溶液铸造方法来制造生物聚合物膜。制备的生物聚合物膜的特征是XRD,FTIR,DSC,AC阻抗,TGA,CV和LSV技术。X射线衍射分析(XRD)研究膜的晶体/无定形性质。傅立叶变换红外光谱(FTIR)证实了盐和聚合物之间的络合。添加钠盐并掺入增塑剂可将纯琼脂的离子电导率从3.12×10 -7 s cm -1 cm -1至3.15×10 -3 s cm -1提高。差异扫描量热法(DSC)研究玻璃过渡温度(T g)趋势,盐浓度。最高的导电生物聚合物膜的T g值为22.05°C。热重分析(TGA)检查膜的热稳定性。Wagner的DC极化技术评估了制备的膜的转移数。[4]。分别通过线性扫描伏安法(LSV)和环状伏安法(CV)研究了最高导电膜的电化学和循环稳定性。这些发现促进了具有最高性能生物聚合物膜的原代钠离子导电电池的发展。用两种不同的阴极材料(V 2 O 5和MNO 2)研究了电池的性能,当使用V 2 O 5用作阴极时,达到了3.13 V的最高显着开路电压(OCV)。(收到2023年9月13日; 2023年12月11日接受)关键词:生物聚合物膜,增塑剂,反卷积,电导率研究,环状伏安法1。正在进行研究以创建生物基的聚合物来解决环境挑战,这是当代全球目标的一部分,以为基于生物的未来做一个环保过程[1]。预计聚合物研究的增加,特别是关于生物聚合物,以满足未来的工业需求[2]。聚合物电解质(PE)的主要优势是它们的机械品质,更容易获得的薄膜制造和电化学设备。它们可以与电极材料形成良好的接触[3]。由于它们在固态电化学设备中的用途,离子传导PE引起了固态离子学的注意。聚合物研究的主要基本目标是合成具有优异离子电导率的聚合物系统。由于其强大的离子电导率,广泛的电化学稳定性和高能量密度,它们可以是固态电池中的电解质[5]。固体聚合物电解质(SPE)可以开发各种固态电化学设备,例如电池,燃料电池,传感器和太阳能电池[6,7]。生物聚合物及其基于的产品已被研究针对各种新型应用,在这些应用中,它们可以替代使用现有的
排放能力和库仑效率超过50个周期(左)和电压容量曲线(右)半细胞,26°C,0.1C,0.1C,钠阳极,1M NACLO 4/PC/FEC电解质
基于碱性和碱性地球元素的lIthium后电池是更便宜的技术,其潜力有可能在过渡到更清洁和可持续的能源中的颠覆性变化,从而降低了对化石燃料的依赖。这项贡献涉及钠导电的无溶剂聚合物电解质对钠聚合物电池的发展和表征。通过α,ω-二羟基 - oligo(氧化乙烯)的多浓度与不饱和二甲酰基获得,其进一步的固化会导致无定形的网络电解质膜。在不同的O/Na比下使用NaClo 4和NACF 3 SO 3 SO 3,最佳的聚合物电解质达到90℃的阳离子电导率(σ +),超过1 ms cm -1,而保持机械完整性至少至少120°C. c.
摘要鉴于对锂离子电池(LIBS)的快速增长需求以及即将到来的自由lib退休的高潮,对用过的LIB的有效回收表明,对经济利益和环境保护的重要性越来越大。使用Lifepo 4(LFP)阴极的LIB占LIB市场的一半,因此必须为用过的LFP(SLFP)电池开发适当的回收方式。在这项工作中,提出了SLFP阴极的闭环再生,其中发明了一种易于的冷刺激途径,以使SLFP层从Al Foil中剥离,然后在基于NACLO的氧化剂的情况下,在果皮SLFP层中选择性地有效地从果皮SLFP层中选择性地提取了Li和Fe元素。元素Li的浸出率可以达到98.3%,并且通过恢复的Li 2 Co 3和FEPO 4合成的重生LFP显示出卓越的性能,排放能力为162.6 mAh g -1,在0.5 C下为162.6 mAh g -1。这种再生路线大大降低了化学型的使用,从而缩短了Inpurity Remaver the Impurity Remaver the Impurity powner,因此,将Slfrity Remerties和Charefore conlef inflip crolection降低了,并将其重新降低。
常用的电解质溶液包括六氟磷酸钠(NaPF6)、高氯酸钠(NaClO4)、六氟砷酸钠(NaAsF6)、四氟硼酸钠(NaBF4)、二氟草酸硼酸钠(NaBOB)等,有机溶剂一般为烷基碳酸酯化合物。13,14电解液同时影响SIBs的电化学性能和安全性,它不仅决定了电池的电化学窗口和能量密度,还控制着电极/电解液界面的性能。15,16电解液复杂的电化学副反应和金属钠枝晶的形成在一定程度上限制了SIBs的发展。目前,对SIBs电解质的研究主要集中在新型电解质盐、溶剂改性及混合、新型添加剂等方面。一系列新型钠盐,如二氟乙酸钠磺酰亚胺钠(NaFSI)、三氟甲基磺酰亚胺钠(NaTFSI)、二氟乙酸钠硼酸盐(NaODFB)等已被证明是潜在的替代品。17 – 19与传统碳酸酯溶剂相比,醚类溶剂可作为SIBs电解质的替代品。20此外,腈类、氟化溶剂、羧酸盐溶剂、离子液体也可作为候选溶剂。特别是新型添加剂由于其优异的成膜性能、高低温稳定性、快速充电能力,近年来成为研究重点。 21,22 在 SIB 中,成膜组分 NaF 在反应过程中相对容易溶解,导致电极界面不稳定。23 通常,不稳定的电解质界面