烟酰胺腺嘌呤二核苷酸(NAD +)对于哺乳动物细胞中的各种氧化还原反应是必不可少的,尤其是在能量生产过程中。恶性细胞增加了NAD +生物合成酶的表达水平,用于快速增殖和生物量产生。此外,安装证明表明,降解酶(NADase)在创建免疫抑制性肿瘤微环境(TME)方面发挥了作用。有趣的是,抑制NAD +合成和靶向NADase都对癌症治疗具有积极影响。在这里,我们总结了NAD +产生增加的有害结果,NAD +代谢酶在创建免疫抑制性TME方面的功能,并讨论NAD +合成和靶向NADase的NAD +合成和疗法的抑制剂的进度和临床转化潜力。
摘要在原核生物和真核先天免疫系统中,TIR结构域是降解关键代谢物NAD +或产生信号分子的NADase。TIR结构域的催化激活需要寡聚,但是在不同的免疫系统中这是如何实现的。在S HORT p rokaryotic ar gonaute(pago) / t ir-a p az(sp Art a)免疫系统中,TIR NADase活性是在引导RNA介导的对v adno dna b y n unkno wn机制中的引导RNA介导的识别的识别。在这里,我们描述了无活性单体和靶DNA激活的四聚体状态中Sp Art a的cry o-em str uct us。单体SP ART A uct ure表明,在没有靶DNA的情况下,Tir-Apaz的C末端尾巴占据了Pago和Tir-ap Az亚基的核酸结合裂缝,抑制SP ART A激活。在活性四聚体SP ART中,引导RNA介导的靶DNA结合置换了C末端的尾巴,并诱导Pago中的构象变化,从而促进了SP ART A-SP ART二聚体。同时释放和一个TIR结构域的旋转使其能够在二聚体内部与另一个TIR结构域形成一个复合的NADase催化位点,并生成一个介导合作四聚体的自相互界面。组合,这项研究提供了对SP ART A的Str UCT架构构建的关键见解,以及靶靶DNA依赖性低聚和催化激活的分子机制。
二核苷酸糖基水解酶 (NADase) 可产生多种核苷酸衍生的信号分子 ( 5 , 6 )。这些衍生物被进一步加工成短寿命产物,根据其结构,这些产物可作为选择性配体,驱动由脂肪酶样蛋白 EDS1 (增强疾病易感性 1) 和 SAG101 (衰老相关基因 101) 或 PAD4 (植物抗毒素缺乏 4) ( 5 , 6 ) 组成的预先形成的蛋白质异二聚体发生特定重排。然后,两种类型的 EDS1 异二聚体会选择性地募集所谓的“辅助 NLR”,在 EDS1-PAD4 的情况下称为 ADR1(激活抗病性 1),在 EDS1-SAG101 的情况下称为 NRG1(氮必需基因 1)。然后 NRG1 和 ADR1 寡聚化并形成膜定位钙通道,从而激活下游免疫反应,特别是对于 NRG1 而言,导致受感染植物细胞死亡(7,8)。
摘要 Toll/白细胞介素-1/抗性 (TIR) 结构域蛋白有助于所有细胞界的先天免疫。TIR 模块由自关联激活,在植物、哺乳动物和细菌中,一些 TIR 具有对抗病和/或细胞死亡至关重要的酶功能。许多植物 TIR 独有蛋白和病原体效应物激活的 TIR 结构域 NLR 受体都是 NAD + 水解酶。生化、结构和功能研究表明,对于植物 TIR 蛋白类型和某些细菌 TIR,NADase 活性都会产生促进抗性的生物活性信号中间体。发现了一组植物 TIR 催化核苷酸异构体,它们与 EDS1 复合物结合并激活,促进它们与共同发挥作用的辅助 NLR 相互作用。跨界 TIR 酶分析填补了了解病原体干扰如何诱导 TIR 调节的免疫反应的重要空白。
无菌α和包含1(SARM1)的TIR基序是一种可诱导的NADASE,在损伤后发生的整个神经元和感觉代谢变化都定位于线粒体。在SARM1耗竭或激活后观察到最小的蛋白质组学变化,这表明SARM1不会对神经元蛋白稳态产生广泛的影响。然而,响应损伤和细胞胁迫的整个神经元中是否发生SARM1激活,在很大程度上未知。使用半小动的成像管道和定制的深度学习评分算法,我们研究了混合性性小鼠原发性皮质神经元和男性人类诱导的多能干细胞衍生的皮质神经元的变性,以响应许多不同的胁迫。我们表明,根据压力源,SARM1激活差异限于特定的神经元室。皮质神经元在机械横切后经历SARM1依赖性轴突变性,而SARM1激活仅限于损伤部位远端的轴突室。然而,VACOR处理后的全局SARM1激活会导致细胞体和轴突变性。上下文特异性应激源,例如微管功能障碍和线粒体应力,会诱导轴突SARM1激活,从而导致SARM1依赖性轴突变性和与SARM1无关的细胞体死亡。我们的数据表明,隔室特异性SARM1 - 介导的死亡信号传导取决于损伤的类型和细胞应激源。