摘要开发有效的胰岛素输送系统仍然是糖尿病管理中的重大挑战。这项研究旨在设计和评估pH响应性纳米凝胶的葡萄糖依赖性胰岛素释放,以满足对更多生理响应式治疗方法的需求。pH反应性纳米凝胶。该系统的特征是pH依赖性肿胀,胰岛素加载效率和释放动力学。体外研究使用L929和MIN6细胞评估了生物相容性,而体内研究在28天内评估了糖尿病大鼠模型中的血糖控制。纳米凝胶表现出与葡萄糖浓度相关的pH依赖性尺寸变化(185±12 nm至338±28 nm)。胰岛素负荷效率达到75.8±3.2%,在高血糖条件下释放率提高。体内研究表明,与游离胰岛素相比,血糖的控制优越,其作用持续时间(18.5±2.5 h vs 6.5±1.0 h)和降血糖事件降低(3 vs 12 vs 12事件/28天)。长期研究表明,在28天内,纳米凝胶稳定性和胰岛素生物活性(94.2±3.5%)维持HbA1c水平(从9.8±0.5%到7.1±0.3%)的显着提高(从9.8±0.5%到7.1±0.3%)。与常规胰岛素治疗相比,开发的pH响应性纳米凝胶系统表现出具有优势长期血糖控制的有效葡萄糖依赖性胰岛素释放。这种方法通过降低给药频率和降低血糖事件的风险来改善糖尿病管理的潜力。关键词:糖尿病,药物输送系统,水凝胶,胰岛素,pH响应材料
(2024年9月11日收到; 2024年11月20日修订; 2024年11月20日接受)摘要。氧化锌纳米颗粒(ZnO-NP)是一种可生物降解且与生物系统具有低毒性和高兼容性的纳米材料。它们似乎具有生物医学和光催化应用的巨大潜力,尤其是与其他金属氧化物纳米材料相比。此外,ZnO-NP具有强大的紫外线(UV)吸收特性,具有成本效益,并且易于合成。但是,纯ZnO-NP具有多个局限性,包括宽的能量带隙,高激发结合能,可见范围内的光催化活性差以及限制其应用的显着电子孔重组。为了解决这些局限性,本研究成功地将氧化石墨烯(GO)纳入ZnO-NP。增加4%的速度将能源差距从2.87 eV减少到2.20 eV,从而大大增强了其活动。由于整合,它们的光催化活性增强了,在80分钟可见光暴露后,降解了98%的亚甲基蓝色染料。此外,GO融合增加了其抗氧化活性,将其半最大抑制浓度(IC 50)从38.38%增加到51.60%。与纯ZnO-NP相比,纳米复合材料表现出优异的抗菌活性,并表明通过GO整合增强了抗菌作用。这些增强归因于改善的带隙,稳定性,表面功能和纳米复合形态,如各种表征方法所证实。关键词:抗菌,抗氧化剂,染料降解,GO/ZnO纳米复合材料,反应性氧
全固态电池的电解质材料 想要彻底改变电池项目的安全性和性能?我们先进的固体电解质为传统液体电解质提供了引人注目的替代品,有可能提高能量密度、提高安全性并延长电池寿命。NEI 的固体电解质材料旨在解决界面兼容性和长期稳定性等关键挑战,为开发更安全、更可靠、性能更高的电池铺平道路。探索我们精选的硫化物、氧化物、磷酸盐、聚合物、NASICON 和卤化物电解质,立即找到最适合您电池需求的材料!
收到:20-12-2024 /修订后接受:24-12-2024 /出版:02-01-2025摘要:当前绘画的点变成了限制或停止利福平的贬低,利福平(抗结核药物)在胃pH值中的抗结核药物在胃pH值中,以供应药物的能力和有助于药物的有用。通过使用抗坏血管腐蚀性作为细胞加固,将评估方法通过配备的利福平堆叠PLGA纳米颗粒进行。DUG堆叠的纳米颗粒,然后通过特殊技术完成对布置纳米颗粒的评估。在此检查中,已对4种信息进行了准备。Definition 1 (F1) is rifampicin alone stacked PLGA nanoparticles, detailing II (F2) is rifampicin - ascorbic corrosive (1:1) stacked PLGA nanoparticles, plan III (F3) is rifampicin - ascorbic corrosive (1:2) stacked PLGA nanoparticles and plan IV (F4) is rifampicin -抗坏血球腐蚀性(1:3)堆叠的PLGA纳米颗粒。评估假定抗坏血酸腐蚀性可以限制利福平在酸性pH情况下的损坏,并以这种方式有助于利福平的可靠性和生物利用度。结果同样表明,费用药物贬值概况中有一个巨大的替代品,而抗坏血管腐蚀性的集中化变为乘以。
不幸的是,如今,脑部疾病(包括神经和精神疾病)是全世界范围内导致残疾的主要原因。一些严重疾病的发病率和死亡率都很高。然而,过时的技术基础设施使得治疗这些疾病变得困难。血脑屏障 (BBB) 是中枢神经系统 (CNS) 的保护机制,调节其稳态过程。大脑受到一个极其复杂的系统的保护,免受伤害和疾病的侵袭,该系统精确调节离子、极少量微小分子以及更少数量的大分子从血液流向大脑。然而,血脑屏障也大大抑制了药物向大脑的输送,使得无法治疗各种神经系统疾病。目前正在研究几种策略来增强药物在血脑屏障上的运输。根据这项研究,纳米粒子是治疗脑部疾病最有希望的药物之一,虽然许多传统药物也能够穿过这一屏障,但
通过操纵包括纳米颗粒(NP)(NPS)的颗粒的形状和大小来设计,布置和应用结构,设备和系统。因此,纳米技术正在推进跨天然科学的各种关键应用到生物医学领域(Haleem等,2023)。尽管纳米材料在生物医学领域表现出巨大的潜力,但目前在该领域缺乏监管指导,这对于为制造商,决策者,卫生机构和公众提供法律确定性很重要。因此,本书还讨论了纳米材料针对临床应用的法规。此外,由于预计纳米材料会显着影响生物医学领域,因此在本书中还讨论了它们的未来方向,以突出读者的当前趋势。
分子科学研究所 (ICMol) 是西班牙的一个多学科研究机构,涉及化学、物理学、材料科学和纳米技术,被西班牙研究机构评为 Maria de Maeztu 卓越单位。(光)化学反应性小组 (PRG) 是 ICMol 的多学科研究小组之一,由 Julia Perez Prieto 教授(有机化学教授(有机化学系)和可持续化学博士课程协调员)领导。该小组旨在开展材料科学和光活性纳米系统的研究,使用先进的光谱学对分子和超分子(纳米)材料进行光物理和光化学表征。
Pagicle Ltd. 很荣幸地宣布,第五届纳米技术和先进材料全球峰会将于 4 月 24 日至 25 日和 26 日在阿联酋迪拜举行。Nanova Dubai 2025 邀请世界各地的人士参加以“新兴范式:纳米技术和先进材料趋势”为主题的盛大会议。其目的是促进纳米技术和先进材料领域的医生、教授、科学家和学生等专业人士之间的知识肯定和新思想交流。该活动是一个分享研究经验、参与讨论和参加各种先进材料和纳米技术主题会议的平台。它还为公司和机构提供了展示其服务、产品、创新和研究成果的机会。如果您的组织有兴趣参与,请表达您的兴趣。会议将根据您的兴趣提供量身定制的计划,包括社交机会、前沿演讲、小组讨论和来自不同背景的演讲者的互动会议。这次激动人心且信息丰富的会议包括主题演讲、口头会议、座谈会、研讨会、海报展示和为来自世界各地的参与者设计的各种计划。欢迎参加 Nanova Dubai 2025,与您的同行交流知识,了解最新创新,并提升您的职业前景。我们热切期待您于 2025 年来到阿联酋迪拜。此致,Nanova Dubai 2025 Pagicle Ltd.
投稿可以是 IEEE 格式的论文(4-6 页)或 1 页的简短摘要。请按照此处的说明,在 2025 年 1 月 15 日至 3 月 1 日期间提交您的投稿。被接受的论文将在 IEEE Xplore 上发表。