本研究探讨了磁流体力学 (MHD) 和生物对流对混合纳米流体在具有不同基液的倒置旋转锥体上的流动动力学的综合影响。混合纳米流体由悬浮在不同基液中的纳米颗粒组成,由于磁场和生物对流现象之间的相互作用而表现出独特的热和流动特性。控制方程结合了 MHD 和生物对流的原理,采用数值方法推导和求解。分析考虑了磁场强度、锥体旋转速度、纳米颗粒体积分数和基液类型等关键参数对流动行为、传热和系统稳定性的影响。结果表明,MHD 显著影响混合纳米流体的速度和温度分布,而生物对流有助于增强混合和传热速率。此外,基液的选择在确定混合纳米流体系统的整体性能方面起着关键作用。这项研究为优化在 MHD 和生物对流效应突出的应用中利用混合纳米流体的系统的设计和操作提供了宝贵的见解。关键词:磁流体动力学 (MHD);生物对流;混合纳米流体;倒置旋转锥;基液;纳米粒子;流动动力学 PACS:47.65.-d、47.63.-b、47.35. Pq、83.50.-v
Dóm tér 9,匈牙利 电子邮件:galbx@chem.u-szeged.hu 摘要 激光诱导击穿光谱 (LIBS) 是原子光谱中一种强大且蓬勃发展的分析技术。尽管 LIBS 也适用于气态、气溶胶和液体样品,但它主要用于固体样品的分析。这是因为所有其他类型的样品在灵敏度和实用性方面都带来了多重挑战。(批量)液体样品的分析尤其具有挑战性,因为它们容易出现聚焦困难、飞溅、等离子猝灭等,导致检测限和重现性降低以及激光能量需求大幅增加 [1]。为了应对这些挑战,文献中报道了多种方法。它们中的大多数依赖于液固转化,而另一些则使用专门的设备将液体呈现为射流、薄膜或液滴等。[2, 3]。尽管如此,虽然消除了批量液体分析的一些缺点,但迄今为止提出的方法在灵敏度、重现性或实用性方面与固体分析相比仍然存在不足。在本研究中,我们提出了一种通过 LIBS 分析液体微样品的替代方法,即利用亲水性强的纳米多孔玻璃作为基底。这种方法的前提是毛细管力会将与玻璃接触的任何水样驱赶到纳米孔中,形成一个细小的两相结构,其中的固体玻璃框架实际上充当激光目标。这种结构在实践中有多种优势:a.) 分析需要非常少量的液体样品(5-10 µ L);b.) 不存在批量液体样品的常见问题;c.) 纳米级结构确保有效的激光耦合和液体样品的均匀分布,从而有利于重现性。对这种直接液体分析方法进行了彻底的研究,研究了分析优势和能力以及可实现的检测限和重现性。致谢作者非常感谢 EKÖP-24-I 提供的资金支持。塞格德大学的大学研究奖学金计划,以及国家研究、开发和创新办公室 (NKFIH) 的 K146733 项目和由奥地利英飞凌科技股份公司在 IPCEI 微电子课程中资助的工业合作参考文献 [1] G. Galbács,Anal. Bioanal. Chem. 407 (2015) 7537。 [2] K. Keerthi,SD George,SD Kulkarni,S. Chidangli,VK Unnikrishnan,Opt. Laser Technol. 147,(2022) 107622。 [3] I. Goncharova,D. Guichaoua,S. Taboukhat,A. Tarbi 等,Spectrochim. Acta B 217 (2024) 106943。
在宇宙中使用纳米颗粒已成为一种变革性的方法,可增强活性成分在护肤配方中的功效和生物利用度。这篇评论论文综合了应用于化妆品行业的纳米技术的最新进展,突出了各种类型的纳米颗粒,包括脂质体,固体脂质纳米颗粒和树枝状聚合物。我们讨论了它们在改善渗透,稳定性和有效化合物的受控释放方面的作用,以及靶向递送和减少副作用的潜力。此外,还检查了使用纳米颗粒的安全性,监管问题和消费者的看法。主要的研究和发现来自一系列来源,包括美容皮肤病学杂志,国际美容科学杂志和纳米医学等经过同行评审期刊:纳米技术,生物学和医学。本文最后讨论了将纳米技术融入宇宙产品中的未来趋势和挑战,并提倡正在进行的研究以充分利用其潜力,同时确保安全性和有效性。
4. 材料:脂质、聚合物、金属或陶瓷 5. 靶向配体:抗体、肽或小分子 工程策略 1. 纳米沉淀 2. 乳化 3. 溶剂蒸发 4. 喷雾干燥 5. 逐层组装。 纳米颗粒类型 1. 脂质体 2. 聚合物纳米颗粒 3. 树枝状聚合物 4. 胶束 5. 纳米晶体 设计考虑因素 1. 生物相容性 2. 生物降解性 3. 稳定性 4. 毒性 5. 可扩展性。 应用 1. 靶向药物输送 2. 癌症治疗 3. 基因治疗 4. 疫苗开发 5. 诊断成像。 好处 1. 增强功效 2. 降低毒性 3. 提高生物利用度 4. 提高患者依从性 5. 个性化医疗。 B) 新材料与新技术 新材料 1. 脂质(例如脂质体) 2. 聚合物(例如 PLGA、PEG) 3. 金属(例如金、银) 4. 陶瓷(例如二氧化硅) 5. 碳基材料(例如石墨烯、纳米管) 6. 树枝状聚合物 7. 胶束 8. 纳米晶体。 新兴技术 1. 纳米沉淀 2. 乳化 3. 溶剂蒸发 4. 喷雾干燥 5. 逐层组装 6. 3D 打印 7. 纳米机器人 8. 纳米传感器。
A.P.,印度。 摘要:本研究的重点是Zn X La 1 -X TiO 3(x = 0.1-0.7)(Zlto)纳米颗粒的合成和表征。 X射线衍射模式证实了四方结构和相纯度,随着锌含量的增加,晶胞尺寸扩大。 形态分析揭示了球形颗粒,杆和纳米级颗粒的形成。 紫外可见光谱表明,根据“ x”的值,范围为3.01 eV至3.64 eV的带隙(E G)。 还检查了介电参数的频率和组成依赖性。 使用复杂的介电模量和阻抗光谱法有效地分析了空间电荷极化。 cole-cole地块证实了Zlto材料的半导体性质,这是由完整的半圆形弧证明的,并揭示了存在非狂热型弛豫的存在。 关键字:纳米颗粒;水热;结构;形态学;乐队差距;电介质。A.P.,印度。摘要:本研究的重点是Zn X La 1 -X TiO 3(x = 0.1-0.7)(Zlto)纳米颗粒的合成和表征。X射线衍射模式证实了四方结构和相纯度,随着锌含量的增加,晶胞尺寸扩大。形态分析揭示了球形颗粒,杆和纳米级颗粒的形成。紫外可见光谱表明,根据“ x”的值,范围为3.01 eV至3.64 eV的带隙(E G)。还检查了介电参数的频率和组成依赖性。使用复杂的介电模量和阻抗光谱法有效地分析了空间电荷极化。cole-cole地块证实了Zlto材料的半导体性质,这是由完整的半圆形弧证明的,并揭示了存在非狂热型弛豫的存在。关键字:纳米颗粒;水热;结构;形态学;乐队差距;电介质。
纳米材料制造中心隆重开幕 自有研发+创新园设施推动全球材料发展(香港,2024 年 8 月 27 日)——金峰国际(控股)有限公司旗下子公司纳盾科技有限公司(“纳盾”)欣然宣布其位于将军澳创新园先进制造业中心(“AMC”)的纳米材料制造中心隆重开幕。该项目得到了香港政府和各界专业人士的大力支持,并获得了创新科技署下属新工业化资助计划(NIFS,前称再工业化资助计划)的 1500 万港元资助。开幕当天,众多嘉宾出席了仪式,包括创新、科技及工业局局长孙东教授、香港理工大学校长滕锦光教授、工业署署长(创新及科技)葛明博士,以及其他商界、学术界和政界专业人士。纳盾借助本地大学强大的研发能力,致力推动全球材料发展。一方面,纳盾与香港理工大学成立创新科技中心,加强全球人才的交流与合作;另一方面,成立“香港科技大学-康德莱德可持续技术联合实验室”,探索可持续技术与材料、减碳、新型工业化等领域的前沿研究与应用。纳盾的母公司是一家拥有强大厨具和饮具设计研发能力的一站式解决方案供应商,纳盾意识到现有过滤技术的不足,因此主要专注于纳米技术的应用,例如将纳米纤维技术加入到水过滤产品中。此后,纳盾进一步将可行性分析扩展到医疗和美容领域。随着纳盾不断扩大业务规模和产品种类,纳盾也意识到需要更高的研发效率和生产能力来支持其发展。 2019年,NANOshields收购了4条独立运营的纳米纤维生产线,第一条生产线设在大埔。2021年,香港科技园公司将其位于大埔、元朗和将军澳的3个工业区重新定位为InnoParks,其位于将军澳的AMC
P301+P310+P330+P331:如果吞咽:请立即致电毒药中心/医生/初学者。冲洗嘴,不要引起呕吐。如果距离医生超过15分钟,请引起呕吐(如果有意识)。P303+P361+P353:如果在皮肤上(或头发):脱下受污染的衣服。用水冲洗皮肤。 P405:存储已锁定。 p501:根据当地法规将容器/内容处理给授权的危险或特殊废物收集点。用水冲洗皮肤。P405:存储已锁定。 p501:根据当地法规将容器/内容处理给授权的危险或特殊废物收集点。P405:存储已锁定。p501:根据当地法规将容器/内容处理给授权的危险或特殊废物收集点。
TNANO特别部分的手稿必须使用IEEE TNANO手稿模板在线提交。遵循指南(https://tnano.org/),并将您的论文提交给Scholarone手稿(http://mc.manuscriptcentral.com/tnano),在求职信中,指出您希望将论文视为“ IEEE交易的ieee symoss symoss symosect of Symosect”(tnale)特殊部门。 2023)”。请注意,提交的类型是常规手稿,即通常有6页(最多12页,在额外页面上征收的强制性页面费用)中,包括两列IEEE格式,其中包括图形,表格和参考文献。在提交给Tnano时,作者应选择“特殊问题”手稿类型,而不是“常规纸”。
Atakan Büke Leipzig University, Germany Berenice Juárez López Autonomous University of Coahuila, Mexico Bushra Usman Foreman Christian College University, Pakistan Ceren Gülser İlikan Rasimoğlu Acıbadem Acıbadem University Zacatecas, Mexico Derya Nizam Izmir Economy University, Turkey Ece Zeybek Yilmaz开发大学,土耳其édgarRamon Arteaga figueroa拉丁美洲纳米技术与社会网络(Relans),墨西哥Erhan Ustaoglu Marmara大学,土耳其Esrake Istanbul Istanbul Medeniyet大学,土耳其Zacatecas,墨西哥Kateryna Tryma Inst。 H. edu。 nat。 A. of Edu Sci。 <乌克兰,乌克兰Atakan Büke Leipzig University, Germany Berenice Juárez López Autonomous University of Coahuila, Mexico Bushra Usman Foreman Christian College University, Pakistan Ceren Gülser İlikan Rasimoğlu Acıbadem Acıbadem University Zacatecas, Mexico Derya Nizam Izmir Economy University, Turkey Ece Zeybek Yilmaz开发大学,土耳其édgarRamon Arteaga figueroa拉丁美洲纳米技术与社会网络(Relans),墨西哥Erhan Ustaoglu Marmara大学,土耳其Esrake Istanbul Istanbul Medeniyet大学,土耳其Zacatecas,墨西哥Kateryna Tryma Inst。H. edu。 nat。 A. of Edu Sci。 <乌克兰,乌克兰H. edu。nat。A. of Edu Sci。 <乌克兰,乌克兰A. of Edu Sci。<乌克兰,乌克兰
科学技术的发展鼓励在各个领域,尤其是通过学术创新。在2010年,安德烈·吉姆(Andre K.使用胶带和石墨。石墨,称为纳米技术;卓越具有导电性,强大和弹性的特性,这些出色的特性使石墨机成为具有巨大使用构建活动的材料,例如桥梁的钢丝绳。NASA计划使用石墨烯升至太空;因为他的力量。这项研究分析了来自Google Scholar,Dimension和ResearchGate等各种来源的出版物,探索了石墨烯及其衍生物的属性,以改善复合水泥和未来建设的特性。具有与石墨烯相同的基本特性,氧化石墨烯(GO)也能够提高混凝土的压缩,拉伸和延性强度,减少裂纹,提供电导率,增加耐腐蚀性并提高混合物混合物的可工具性。尽管其在施工中的使用具有克服未来建筑问题的巨大潜力。但是,要能够在建筑活动中使用石墨烯,它仍然需要大量的开发和研究。