本论文是由Ut Tyler的Scholar Works的生物技术带给您的。已被UT Tyler的学者工作授权管理员所接受的生物技术本学这些纳入。有关更多信息,请联系tgullings@uttyler.edu。
摘要:工业革命后的技术进步给人类的生活方式带来了许多变化。上个世纪加速了这些进步的步伐。这些技术进步提高了人类根据需求操纵世界的能力。纳米技术就是这样一个蓬勃发展的领域。纳米技术是一门科学,它专注于产品创新、原材料、产品属性和产品利用率,通过控制产品尺寸使其保持纳米级的微小程度(shukla,2023)。在当今时代,医疗保健领域更倾向于使用侵入性较小的方法来诊断疾病和精确的药物输送,尤其是在癌症治疗中。这就是纳米机器人发挥作用的地方。纳米机器人是一种在纳米级尺寸的微型水平上生产机器人的技术。它们用于以更高的准确率诊断和治疗各种疾病。纳米机器人在癌症和骨质硬化的诊断和治疗中被广泛使用。它们具有再生死组织的能力,纳米机器人还有助于在精确定位区域以较小批量输送药物,这些区域也可能位于相当远的区域。纳米机器人能够执行诸如检测、处理数据和在微小纳米级显示情报等任务
摘要制药纳米技术是一种开创性的,最近新兴的医学知识领域,涉及使用纳米级配件作为药用输送系统和/或独立设备。可以利用纳米递送设备来改善精确药物的专注,特定的精确药物给药。纳米技术和人工智能(AI)是两个不同的学科,对于实施完美药物的想法至关重要,适应每个癌症实例的时尚疗法。这两个领域之间的最新交叉允许更大的病例数据获取并改善了理想癌症药物的纳米材料创建。使用单个纳米颗粒进行了特定的投诉概况,然后通过多种补救纳米技术来利用此概况来改善治疗结果的结果。尽管个人和补救平台的逻辑设计及其关系的研究非常困难,但由于具有实质性的肿瘤内和室内异质性。利用模式分析和括号算法改善了个体和补救精致,AI技术的整合可以缩小这一差距。通过优化与目标药物,天然液体,脆弱系统,脉管系统和细胞膜的预测关系有关的材料数据包,所有这些都会影响治疗功效,纳米医学设计也受益于AI的运行。随后检查了纳米技术与AI对完美癌症药物的未来相结合的好处和希望,然后研究AI中的临时概括。关键字 - 人工智能,纳米医学,基于AI的药物修饰
医学进步取决于开发新的、更有效的癌症治疗方法。纳米机器人代表了纳米医学的一种有前途的用途,目前在跨学科研究中处于领先地位。纳米技术的进步使纳米机器人能够组装。功能性分子/纳米级设备的应用,在癌症治疗和诊断中越来越常用。药物输送、肿瘤传感和检测、靶向治疗、微创手术和其他完整治疗是纳米机器人在癌症治疗方面的最新进展。本研究检查和评估了使用纳米机器人的癌症治疗领域的最新发展,强调了它们在药物管理、肿瘤检测和诊断、靶向治疗、微创手术和其他广泛的医疗程序中的基本特征和用途。预计未来,医疗纳米机器人将发展得更加复杂,能够执行各种医疗任务。
聚合物是材料科学领域中最好的发明之一,因为其多面应用以及双相基质的存在是晶体和无定形相的共存。本研究代表了聚合物合适应用的功能化功能化的可能性。审查已通过聚合物的基本特征及其相关特征的初始化,以纳米复合材料进行处理。用功能性纳米复合材料的处理描述了基于树脂基质功能化的帐户。聚合物在固态设备中具有最高应用为电解质膜,这是下一代可再生能源存储和生成来源的例子。因此,使用移动盐基质(电荷载体)以及增塑剂和非反应性填充剂(如二氧化硅,氧化铝等)处理非电解质聚合物。一节详细说明了多电解质和非电解质的功能化,随后进行了碳纳米管的发展。在插入纳米管时引入的证明的界面相互作用是与碳纳米管增强的聚合物复合材料相关的大量增强特性。用相关示例说明了对聚合物复合物中纳米填充剂功能和工作方式的机械理解的见解。塑性污染是全球社会的重大威胁,聚合物合成的绿色方法及其生物降解性是重要的研究领域之一。示例在这种情况下,最后一章说明了与绿色聚合物纳米复合材料相关的前景和挑战。
摘要 纳米技术是一个多学科领域,涉及在纳米尺度上操纵物质,通常尺寸小于 100 纳米。它的引入彻底改变了医学、电子和材料科学等多个领域。纳米粒子的合成方法多种多样,如溶胶-凝胶法、热法、共沉淀法、机械工艺等。纳米技术的范围从纳米材料合成到设备制造,使药物输送、纳米电子和储能等各种应用取得了前所未有的进步。本摘要强调了纳米技术在科学和工业领域的广泛影响和潜力。它还用于各种行业,包括燃料电池、食品、化妆品、疫苗、肿瘤靶向输送系统等。单个原子或分子对材料的分离、固结和变形构成了纳米技术的主要过程。纳米技术有多种类型,如纳米药物、纳米粒子、纳米电子、纳米复合材料、纳米生物技术等,它们都用于日常生活中。纳米粒子是通过物理方法、化学方法和生物方法合成的三种不同类型的纳米粒子,用于医学、设备、材料科学、纳米润滑剂、纳米涂层和纳米结构。目前正在开发具有高转换效率的新型纳米材料和概念,这些材料和概念可以从光、运动、温度变化、葡萄糖和其他来源产生能量。纳米技术几乎影响食品和农业系统的各个方面,包括食品安全、疾病治疗交付策略、分子和细胞生物学工具、病原体检测材料和环境保护。纳米技术在治疗学中应用的未来前景。通过使用纳米级材料作为诊断工具,可以快速准确地在早期识别更多疾病
最近发现了二维(2D)纳米材料的特殊化学和物理能力,尤其是电化学特性,这是由于它们的固有形式出色和外部形式。结果,它们正在成为能源节能设备(例如超级电容器)的非常需要的候选者。本研究总结了2D纳米材料的最新进展。对2D纳米材料的生产技术,例如石墨烯,过渡金属氧化物,二分法和碳化物,除了它们的电化学特性外。除其他材料外,用于构建2D石墨烯的方法,提高电极的性能,从而使整体电荷放电。专门讨论了如何设计2D和3D架构,这些结构是使用2D纳米材料混合和多层的2D和多层结构。以及使用2D nanom nanomed nanomearialsials的超级领域的积极方面。我们讨论了将几种2D纳米材料(尤其是石墨烯)转化为超级电容器使用的3D材料方面的最新进展。基于石墨烯的能量储存材料的研究始于对电动双层充电和放电机制的检查,这在这些材料中很普遍。但是,当利用掺杂或化学功能化的石墨烯时,还涵盖了假能映射过程。随后,检查了非碳2D纳米材料,包括用于离子插入和氧化还原机制优先级的假能映射过程。过渡金属碳化物,过渡金属二分法和金属氧化物就是这些的例子。然后讨论了从两维纳米材料中组合3D巨大材料的方法,对于创建各种设备至关重要。关键字:2D - 过渡金属二核苷,3Dgraphene,功能化,能源存储,超级电容器
在本实验课中,学生将参与一项动手实验,设计和制作明胶胶囊,用于在预定条件下控制药物输送。课程首先快速回顾药物输送概念,并介绍实验目标。学生将了解控制药物释放的概念,并负责制作符合特定时间释放标准的胶囊(通常胶囊在 15 分钟内溶解在水中,可用于显示快速释放,如果将一层胶囊加到另一层胶囊上以模拟缓释,则可能需要 30 分钟,老师应在上课前确认胶囊溶解需要多长时间)。他们以小组为单位,将食用色素液、小糖果或彩色糖(代表“药物”)装入胶囊,并观察胶囊在温水中的行为。
急性髓系白血病 (AML) 是一种影响全身的血液系统恶性肿瘤 [1]。尽管对 AML 发病机制的研究日益深入,并且出现了 FMS 样受体酪氨酸激酶 3 (FLT3) 酪氨酸激酶抑制剂 (TKI) [2-4]、异柠檬酸脱氢酶 (IDH) 抑制剂 [5-7] 和 B 细胞白血病/淋巴瘤 2 (BCL2) 抑制剂 [8] 等靶向药物,但大多数患者仍然依赖常规化疗和造血干细胞移植 (HSCT) [9]。作为 AML 中最常见的突变亚型,FLT3 内部串联复制 (ITD) 突变会导致后续信号通路持续激活并增加复发风险 [10]。新一代 FLT3 抑制剂,如吉利替尼,单用时只能部分抑制 AML 细胞生长和暂时的临床反应 [11]。因此,迫切需要探索潜在的
它的快速分析和超长读数,纳米孔测序改变了基因组学,转录和表观基因组学。现在,由于纳米孔设计和蛋白质工程的进步,使用该技术的蛋白质肛门可能正在追赶。“所有碎片都从那里开始进行单分子蛋白质组学,并使用纳米含量来识别蛋白质及其修饰。这不是确切的测序,但可以帮助您确定存在哪些蛋白质。“您可以通过多种不同的方式识别蛋白质,这些蛋白质实际上并不需要所有20种氨基酸的确切识别,”他指的是蛋白质中通常的数字。在纳米孔DNA测序中,单链DNA通过电流通过蛋白质孔驱动。作为DNA残基横穿孔,它破坏了电流以产生可以将其解码为DNA碱基的特征信号。