2020 年 2 月 25 日至 26 日,地球科学技术办公室 (ESTO) 先进信息系统技术 (AIST) 计划在华盛顿特区成功举办了新观测策略 (NOS) 研讨会。NOS 概念的主要目标是利用多种不同的观测能力(太空、空中和地面)动态优化测量采集,跨多个维度进行协作并创建统一的架构。研讨会介绍了美国多个组织地球观测系统架构的现状,包括 SmallSats 和分布式航天器任务 (DSM);定义了可以从智能和协作分布式交互系统架构中受益的科学用例;并确定了实现此类未来观测系统架构所需的技术能力概念。过去和现在的 AIST 项目团队以及一些相关政府机构代表参加了研讨会。所有与会者的积极参与使研讨会富有成效并取得了有益的成果。在审查从研讨会收集的数据时,我们确定额外的小型分组会议将补充和证实已经收集的科学和技术情景信息,特别是在那些存在明显交集的领域。虚拟 NOS 小型分组会议于 2020 年 6 月 10 日至 7 月 1 日期间举行。本报告包括:
– TEMPO 被选为 GEO 托管有效载荷机会(2018 财年早期发射) – ESD 在正式主机选择/谈判方面取得了出色进展 – 第二次“EV-I/2”征集于 2013 年 7 月发布,提案截止日期为 2013 年 11 月 25 日 – 2014 财年预算提案包括 EV-Instrument/3 和按计划进行的后续征集
“一项旨在研究地球大气层内外飞行问题和其他目的的法案。”凭借这个简单的序言,美国国会和总统于 1958 年 10 月 1 日成立了美国国家航空航天局 (NASA)。NASA 的诞生与国防压力直接相关。第二次世界大战后,美国和苏联卷入了冷战,这是一场围绕不结盟国家意识形态和盟友关系的广泛竞争。在此期间,太空探索成为竞争的主要领域,被称为太空竞赛。在 20 世纪 40 年代后期,国防部开展了火箭和高层大气科学研究,以确保美国在技术领域的领先地位。美国总统德怀特·艾森豪威尔批准了一项计划,将一颗科学卫星送入轨道,作为 1957 年 7 月 1 日至 1958 年 12 月 31 日国际地球物理年 (IGY) 的一部分,这是一项收集地球科学数据的合作努力,这标志着向前迈出了重要一步。苏联迅速效仿,宣布了其卫星的轨道计划。1955 年 9 月 9 日,海军研究实验室的先锋计划被选中支持 IGY 工作,主要是因为它不会干扰高优先级的弹道导弹开发计划。它使用非军用维京火箭作为基础,而陆军提议使用红石弹道导弹作为运载火箭。1955 年下半年和 1956 年全年,先锋计划都备受关注,但该计划的技术要求太高,而资金水平太低,无法确保成功。1957 年 10 月 4 日,苏联发射了世界上第一颗人造卫星 Sputnik 1,作为其 IGY 参赛作品,引发了一场全面危机。这给美国舆论带来了“珍珠港”效应,制造了技术差距的假象,并推动了增加对航空航天事业、技术和科学教育计划的支出,以及成立新的联邦机构来管理航空航天研究和开发。更直接的是,美国于 1958 年 1 月 31 日发射了第一颗地球卫星,当时探险者 1 号记录了环绕地球的辐射区的存在。这些区域受地球磁场影响,被称为范艾伦辐射带,部分决定了大气中的电荷和到达地球的太阳辐射。20 世纪 50 年代末和 60 年代初,美国还开始了一系列月球和行星科学任务。作为斯普特尼克号危机的直接影响,NASA 于 1958 年 10 月 1 日开始运营,将之前的美国国家航空咨询委员会原封不动地并入其中:其 8,000 名员工、每年 1 亿美元的预算、三个主要研究实验室(兰利航空实验室、艾姆斯航空实验室和刘易斯飞行推进实验室)和两个较小的测试设施。它迅速将其他组织纳入新机构,尤其是海军的空间科学组
首席技术专家的信 . . . . . . . . . . . . . . . . . . . iii 简介 . . . . . . . . . . . . . . . . . . . . . . . . . . v TX01:推进系统 . . . . . . . . . . . . . . . . . . . . . 1 TX02:飞行计算和航空电子设备 . . . . . . . . . . . . . . . 15 TX03:航空航天动力和储能 . . . . . . . . . . . . 27 TX04:机器人系统 . . . . . . . . . . . . . . . . 35 TX05:通信、导航和轨道碎片跟踪和特性描述系统. . . . . . . . . . 51 TX06:人类健康、生命支持和居住系统. . . . . . . . . . . . . . 65 TX07:探索目的地系统. . . . . . . . . . . 83 TX08:传感器和仪器. . . . . . . . . . . . 95 TX09:进入、下降和着陆. . . . . . . . 105 TX10:自主系统. . . . . . . . . . 115 TX11:软件、建模、仿真和信息处理. . . . . . . . . . . 127 TX12:材料、结构、机械系统和制造. . . . . . . . . . . . . 145 TX13:地面、测试和表面系统 . ... . ...
美国宇航局的连续失败不容忽视。航天飞机发射的巨额开支使美国宇航局在国际市场上失去了竞争力,无法发射用于研究天气、国际通信系统或全球表面测绘等实用卫星。在航天飞机计划开始时,美国宇航局宣布,这笔巨额投资将很快得到回报,因为它将使太空发射比一次性助推器便宜得多。但 20 年后的今天,事实却截然相反:将每磅重物发射到近地轨道的成本比其他几个国家同时开发的无人一次性助推器高出许多倍。此外,灾难和险些发生的灾难清楚地表明,航天飞机不是一种安全的发射系统。除此之外,我们还目睹了一系列大规模的失败。哈勃太空望远镜耗资 20 亿美元,但其设计缺陷十分严重,在发射前,只需花费很少的额外费用,用相当简单、高精度的测量仪器就能发现。最近的修复任务能否成功还有待观察。但修复成本(6.3 亿至 12 亿美元)必定会降低人们对修复的热情,因为修复最多不能使仪器达到最初预期的性能。需要修复的独立严重故障数量之多,无法做出良好的预测。伽利略号探测木星及其卫星的任务耗资超过 10 亿美元,可能仍会取得一些成果,但展开航天器天线时发生的机械故障将阻止其将所有结果发回地球。现在,在一系列耗资巨大的航天飞机发射失败之后,另一个耗资近 10 亿美元的重大项目——火星轨道器,也莫名其妙地失败了。同样,一颗地球测绘卫星(Landsat 系列的延续)现在正无用地漂浮在某个未知的地球轨道上。考虑到巨大的成本,一个经过精心规划的项目会遭遇如此接二连三的失败吗?20 世纪 70 年代初,人们非常仔细、详细地讨论了规划太空研究项目的问题。一些外部顾问委员会(一些由 NASA 设立,一些由白宫科技办公室设立)提出了许多详细的建议,这些建议包括:
The Traditional NASA Community: The Agency, Industry, and Academia NASA's civil servant workforce of scientists, engineers, program managers, and others have been a critical force in the design, development, test, operation, and management of spacecraft and aeronautics systems and an assortment of scientific research and technology projects ranging from making discoveries throughout the solar system and universe to maintaining a human presence in Earth orbit.今天,我们高度技能和以任务为中心的员工(如今约有17,000名)对于NASA的持续创新和勘探成功至关重要。NASA的最大成就并不是NASA的独自一人。与NASA劳动力合作实现雄心勃勃的太空目标,已经有数万个人来自学术机构,私人公司和其他太空机构。今天,NASA的80%以上的资金支持该机构的招标和奖励。各种规模和学术界专家的公司通过合同和同行评审的赠款从事这项工作。此外,国际太空机构和其他各种组织每年进行数百个合作。这些合作是通过签署的协议和谅解备忘录以不交换基础进行的。
2020 年 2 月 25 日至 26 日,地球科学技术办公室 (ESTO) 先进信息系统技术 (AIST) 项目在华盛顿特区成功举办了新观测策略 (NOS) 研讨会。NOS 概念的主要目标是利用多种不同的观测能力(太空、空中和地面)动态优化测量采集,跨多个维度进行协作并创建统一的架构。研讨会介绍了美国多个组织地球观测系统架构的现状,包括 SmallSats 和分布式航天器任务 (DSM);定义了可以从智能和协作分布式交互系统架构中受益的科学用例;并确定了实现此类未来观测系统架构所需的技术能力概念。过去和现在的 AIST 项目团队以及一些相关政府机构代表参加了研讨会。所有与会者的积极参与使研讨会富有成效并取得了有益的成果。在审查研讨会收集的数据时,我们确定额外的小型分组会议将补充和证实已经收集的科学和技术情景信息,特别是在那些存在明显交集的领域。虚拟 NOS 小型分组会议于 2020 年 6 月 10 日至 7 月 1 日期间举行。本报告包括: