我们的集成 RAST(恢复辅助、固定和横移)和 ASIST(飞机船舶集成固定和横移)直升机处理系统已成为许多海军的首选。这些完全集成的系统的独特之处在于,它们使直升机飞行员能够在恶劣的天气条件下和夜间从相对较小的船舶甲板上安全降落和起飞。然后,在着陆后,直升机可以安全地进出机库。TC–ASIST(双爪飞机船舶集成固定和横移)和 MAST(手动飞机固定和横移)是一种新开发的系统,提供许多与 RAST 和 ASIST 类似的功能,但与网格着陆系统兼容,并使用其主起落架固定直升机,无需集成探头。
[指挥信头] 11310 序列/日期 “原始申请信”的第一签注 ltr 113010 Ser 000/000 of 1 Jan 12 来自:战地工程司令部指挥官 致:海军设施司令部指挥官 经由:海军地区指挥官(西南、西北、欧洲) 主题:移动公用事业支持设备申请(MUSE) 1. 转发,建议批准/不批准。 2. 需要任何进一步的信息。 3. 我的联系人是(姓名和职务)。他/她的联系方式是 DSN 555-5555、商业电话(123)456-7890 或电子邮件 _______._____@navy.mil。 _______________________________ 按方向打印姓名、军衔、头衔商业:_____________________ DSN:____________________________ 抄送:NAVFACHQ-PW 请求命令
2000 年左右拍摄的 Coasters Harbor Island 上的海军战争学院建筑群,大致朝东北方向。前景中央是 Luce Hall,左边是 Pringle Hall,后面是 Mahan Hall;在它们后面的左边是 Spruance、Conolly 和 Hewitt Hall。中间是 McCarty Little Hall,部分被 Conolly Hall 遮挡。前景最右边是 Founders Hall,学院就是在这里建立的。近年来,学院已经扩展到岛屿北部水面作战军官学校司令部的几栋建筑。中间距离是纽波特海军基地的设施(退役的航空母舰前福莱斯特号和前萨拉托加号在 1 号码头可见),再往前是海军水下作战中心。远处可以看到朴茨茅斯和罗德岛蒂弗顿镇的部分地区。
索具工:(72R)索具工选择、安装和使用电缆、绳索、卸扣、梁夹、支撑架和其他重物处理设备来提升、移动和定位重物。索具工使用复杂的多点悬挂技术,通过倾斜、下沉和转动悬挂的负载,在障碍物上方、下方和周围移动。其他职责包括制造、安装和维修固定索具和活动索具以及钢丝绳或纤维绳物品,例如吊索、牵引绳、钢丝绳网和其他船舶索具和重物处理设备。索具工指导起重机和类似设备的操作,并规划间隙和安全因素。他们通过布置和处理泊位缆绳和滑车、将缆绳拉到系缆桩或系船柱上、通过操作绞盘拉动缆绳以及执行类似任务来协助船舶停靠操作。索具工与船舶建造工一起进行码头建设以及在停靠操作期间对船舶进行定位。
核电站运行的最大经验是核海军推进,特别是航空母舰和潜艇。这些积累的经验可能成为拟议的新一代紧凑型核电站设计的基础。核动力潜艇的任务正在根据信号情报收集和特种作战重新定义。核动力舰艇约占美国海军作战舰队的 40%,包括整个海基战略核威慑力量。美国海军的所有作战潜艇和超过一半的航空母舰都是核动力的。这里的主要考虑因素是核动力潜艇不像传统发电厂那样消耗氧气,而且它们在燃料补给之前具有很长的续航能力或任务时间;仅受船上可用的食物和空气净化用品的限制。另一个独特的考虑因素是使用高浓缩铀 (HEU) 来提供紧凑的反应堆系统,该系统具有足够的内置反应性,以克服氙气反应堆的死区时间,从而实现快速重启和加油之间的长燃料燃烧期。第二次世界大战期间,潜艇使用可以在水面运行的柴油发动机,为大量电池充电。这些电池随后可以在潜艇下潜时使用,直到电量耗尽。此时潜艇必须浮出水面为电池充电,并且容易受到飞机和水面舰艇的探测。尽管使用特殊的通气管装置将浅潜水下的潜艇吸入和排出空气,但核反应堆理论上可以为其提供无限的下潜时间。此外,核燃料的高比能或每单位重量的能量消除了跟随水面或水下海军舰艇舰队的脆弱油轮舰队不断加油的需要。另一方面,核反应堆一次加油足以满足长时间的需要。现代海军反应堆的浓缩度高达 93%,铀 235 的浓缩度可达 97.3%,设计为在 20-30 年的使用寿命中每 10 年或更长时间更换一次燃料,而陆基反应堆使用的燃料浓缩度低至铀 235 的 3-5%,每 1-1.5 年需要更换一次燃料。新堆芯的设计使用寿命为在航母上 50 年,在潜艇上 30-40 年,这是弗吉尼亚级潜艇的设计目标。堆芯中加入了可燃毒物,如钆或硼。这允许较高的初始反应性,以补偿裂变产物毒物在反应堆寿命期间的积累
核电站运行的最大经验是核海军推进,特别是航空母舰和潜艇。这些积累的经验可能成为拟议的新一代紧凑型核电站设计的基础。核动力潜艇的任务正在根据信号情报收集和特种作战重新定义。核动力舰艇约占美国海军作战舰队的 40%,包括整个海基战略核威慑力量。美国海军的所有作战潜艇和一半以上的航空母舰都是核动力的。这里的主要考虑因素是核动力潜艇不像传统动力装置那样消耗氧气,并且在燃料补给之前具有较长的续航能力或任务时间;仅受船上可用的食物和空气净化用品的限制。另一个独特的考虑是使用高浓缩铀 (HEU) 来提供紧凑的反应堆系统,该系统具有足够的内置反应性,可以克服氙气反应堆的死区时间,从而实现快速重启和加油之间的长燃料燃烧期。在第二次世界大战期间,潜艇使用可以在水面运行的柴油发动机,为大量电池充电。这些可以在潜艇潜水时使用,直到放电。此时,潜艇必须重新浮出水面为电池充电,并且容易受到飞机和水面舰艇的探测。尽管使用特殊的通气管装置将空气吸入和排出浅潜于水面以下的潜艇,但核反应堆理论上为其提供了无限的潜水时间。此外,核燃料的高比能(即每单位重量的能量)消除了跟随水面或水下海军舰艇舰队的脆弱油轮舰队不断加油的需要。另一方面,核反应堆一次加油足以满足长时间的需要。现代海军反应堆的浓缩度高达 93%,U 235 能够达到 97.3%,设计为在其 20-30 年的使用寿命中每隔 10 年或更长时间才加油一次,而陆基反应堆使用的燃料浓缩度低至 U 235 的 3-5%,需要每隔 1-1 1/2 年加油一次。新反应堆的设计使用寿命为航母 50 年,潜艇 30-40 年,这是弗吉尼亚级潜艇的设计目标。核心中含有可燃毒物,例如钆或硼。这些允许较高的初始反应性,以补偿裂变产物毒物的积累