具有极快响应时间的爆炸能量转换材料在能源、医疗、国防和采矿领域有着广泛且日益增长的应用。对该领域潜在机制的研究和新候选材料的搜索非常有限,以至于环境不友好的 Pb(Zr,Ti)O 3 在半个世纪后仍然占主导地位。在这里,我们报告了一种以前未被发现的无铅 (Ag 0.935 K 0.065 )NbO 3 材料的发现,该材料具有创纪录的高能量存储密度 5.401 J/g,可在 1.8 微秒内实现约 22 A 的脉冲电流。它还表现出高达 150°C 的优异温度稳定性。各种现场实验和理论研究表明,这种爆炸能量转换的潜在机制可以归因于压力引起的八面体倾斜变化,从 a − a − c + 到 a − a − c − / a − a − c +,这与不可逆的压力驱动铁电-反铁电相变一致。这项工作为 Pb(Zr,Ti)O 3 提供了一种高性能替代品,也为进一步开发用于爆炸能量转换的新材料和设备提供了指导。
在引言中,我们对发现较高的材料的发现(SC)的发现进行了简短的历史调查,这些材料并非纯粹的状态。对于这种材料,在存在不同掺杂剂的情况下,向SC状态的过渡发生。最近在高压基材料中,SC在室临界温度下获得。在本文中,我们介绍了代表Infini-tum晶体的分离群集的计算结果,该簇是rh和pd作为掺杂剂的结果。所有计算均使用程序套件高斯16进行。使用高斯09.在嵌入式群集的情况下,应用了MP2电子相关水平的嵌入式聚类方法的方法。在NBO种群分析中揭示了两个主要特征:电荷密度转移从自旋密度转移的独立性,以及具有元素密度但没有旋转密度的轨道的存在。这类似于安德森(Anderson)的无旋转,并证实我们在先前出版物中的结论,即超导性的可能机制可以是安德森(Anderson)对高层callates高的T C超导性产生的RVB机制。
本文介绍了一种由压电微机械超声换能器 (pMUT) 阵列实现的空中触觉接口设备,该设备首次在 15 mm 距离处实现了前所未有的 2900 Pa 的高传输压力。该结构基于溅射铌酸钾钠 (K,Na)NbO 3 (KNN) 薄膜,具有高压电系数 (𝑒𝑒 31 ~ 8-10 C/m 2 )。由 15×15 双电极圆形隔膜组成的原型 KNN pMUT 阵列的谐振频率约为 92.4 kHz。测试结果显示,在 15 mm 外的自然焦点处,仅在 12 V pp 激励下,传输灵敏度就达到每伏 120.8 Pa/cm 2,这至少是之前报道的类似频率的 AlN pMUT 的 3 倍。此外,还实现了在人手掌上产生类似风的感觉的即时非接触式触觉刺激。因此,这项研究为人机界面应用(如消费电子产品和 AR/VR 系统)开发出一种具有高声输出压力的新型 pMUT 阵列提供了启示。关键词
利用密度泛函理论讨论了环状三氧化铬团簇与各种气体的相互作用。研究了 n=1 至 6 的环状 (CrO 3 ) n 团簇。相互作用的气体包括 CO、H 2 、NH 3 、CH 4 和 O 2 。所有相互作用的气体都会从 CrO 3 团簇中吸收氧原子(O 2 除外),留下缺氧的团簇,而环境空气中的 O 2 会重新氧化这些团簇。CrO 3 缺氧团簇具有较低的能隙,这提高了这些团簇对相互作用气体的敏感性。讨论了相互作用的热力学,包括对吉布斯自由能、焓和反应熵的评估。反应温度的变化使用吉布斯能量值显示了反应发生的温度范围。一些气体反应是放热的还是吸热的,具体取决于焓的值。自然键轨道 (NBO) 分析显示了 CrO 3 团簇和气体中每个原子上的电荷。这些电荷解释了团簇和气体之间的反应静电。可以使用能隙和反应速率的变化来计算气体对这些气体的相对敏感度。
图 1 . (a) Na 1-x K x NbO 3 铁磁体(x=0、0.16、0.42、0.52、0.63、0.82、1)的实验总原子 PDF。箭头强调了 KNN 及其成分的局部和平均结构的细微(红色箭头)和明显(蓝色箭头)演变。 (b) PDF 的低 r 区域表明存在相当刚性的 Nb-O 6 八面体(PDF 峰在约 1.9 Å 处,标记为单个八面体),碱金属原子的位置顺序随 K 百分比增加(PDF 峰在约 2.8 Å 处,标记为两个八面体和附近的碱金属原子),相邻八面体中心的 Nb 原子之间的距离几乎没有变化(PDF 峰在约 4 Å 处,标记为角共享八面体),以及包括八面体倾斜在内的次近邻原子相关性的细微演变(PDF 峰在约 6.9 Å 处,标记为 4 个倾斜八面体)。(c)PDF 的高 r 区域表明与母体化合物相比,KNN 中的结构相干性范围有限(参见各自 PDF 的加速衰减,其中原子间距离用红色虚线标出)。
Niobate锂是其具有挑战性的功能性能的特殊材料,可以适合各种应用。然而,到目前为止,在蓝宝石底物上生长的高品质200毫米li x nb 1-x o 3薄片迄今为止从未报道过这限制了这些潜在应用。本文报告了蓝宝石(001)底物在组合构造中通过化学梁蒸气沉积在蓝宝石(001)底物上对高质量的薄膜沉积的有效优化。使用此技术,LI/NB的流量比可以从单个晶圆上调整≈0.25至≈2.45。在膜的胶片(不同阳离子比)的不同区域进行了各种互补特征(通过不同的效果,显微镜和光谱技术),以研究阳离子化写计数器对纤维属性的影响。接近阳离子化学计量学(Linbo 3),外延纤维具有高质量(尽管有两个平面域,但低镶嵌性为0.04°,低表面粗糙度,折射率和带隙接近散装值)。偏离化学计量条件,检测到次级相(富含NB的流动比的Linb 3 O 8,Li 3 NBO 4具有部分非晶化的Li-foW流比)。linbo 3薄膜对于数据通信中的各种关键应用程序都具有很高的兴趣。
癌症治疗的最重要和常见方法是化学疗法,手术和放疗。但是这些提到的方法具有重要的副作用,例如无法忍受的毒性,对癌细胞的药物访问有限,异质药物和生长癌细胞的生物抗性,从而降低了成功率。因此,迫切需要使用药物输送系统和靶向治疗来改善治疗过程。单壁碳纳米管的使用是一种靶向癌症治疗。该项目的目的是研究抗癌药物作为单壁碳纳米管的抗癌药物的相互作用潜力的不同变量。通过M06/6-311+G*级别中的基本叠加误差(BSSE)评估并通过基集叠加误差(BSSE)进行评估和校正。评估的结果表明,通过增加溶剂的介电常数,粘结能减少。因此,稳定性增加。然后,在M06/6-311+G*水平上,SWCNT与Capecitabine药物相互作用的评估结果表明这种吸收是自发的。根据AIM分析的结果,N1 -C87相互作用键具有部分共价性质。过渡电子可以从供体原子(Capecitabine中的唯一氮对)迁移到受体原子的σ^* - 轨道(SWCNT碳原子的σ^*轨道),如NBO分析所观察到的,并报告。蒙特卡洛模拟结果表明,由于抗癌药与SWCNT之间的相互作用,水溶剂中的溶剂化自由能变得更加阴性。所产生的相互作用复合物的总能量比SWCNT的总能量更为负,这表明两种方法彼此相对应。
自1885年第一次使用氧气用于呼吸支持以来,氧气的效用已随着我们对氧剂量机制和生物学作用的理解的演变而不断演变。这些生物学作用之一,干细胞动员,为细胞氧张力在组织愈合和再生中的作用提供了关键机制(Thom等,2006)。随后的研究建立了氧剂量与干细胞动员之间的直接关系(Heyboer等,2014)。通过氧气剂量动员干细胞的机理在骨髓中增加一氧化氮(Goldstein等,2006),导致血管形成加速和伤口愈合(Gallagher等,2006; Milovanova等,2008,2008)。这些论文在2.0 atm的绝对呼吸100%氧(PIO2 = 1,426 mmHg)和2.4 ATM绝对呼吸100%氧气(PIO2 = 1,777 mmHg)上,在2.0 atm氧气的刺激剂量曲线的剂量刺激阶段建立了两个点。氧气的低剂量刺激阶段尚未完全阐明。在我们实验室中进行的一项实验中,首次研究了开始干细胞动员和细胞因子调节所需的最小剂量。该实验表明,在大鼠模型中,干细胞被42%正常氧(PIO2 = 300 mmHg)动员(Maclaughlin等,2019)。随后在2022年的实验室还进行了一个新的实验,建立了一个新的低剂量刺激点为1.27 atm绝对高压空气(PIO2 = 189 mmHg)。这些发现支持低氧水平可以实质上影响干细胞动力学和该研究导致动员的茎祖细胞(SPC)在9次暴露至1.27 ATA高压空气后,在第十次暴露后72小时进一步增加了3倍,不仅立即增加了3倍,这不仅表明即时而且持久效果(Maclaughlin等人,20233)。为了进一步阐明氧气的炎症剂量曲线的低剂量刺激阶段,在本实验中,我们测试了NBO(100%正常医学氧)(PIO2 = 713 mmHg),以进行干细胞动员和炎症细胞因子调节。首次以氧气的氧气和供应渠道不知所措,但最终导致了改善,因此其万维邦的可用性增加了(组织,2021年)。尽管在Covid-19大流行期间使用了氧气,主要是因为其能够为有助于维持足够的血氧水平的肺提供补充氧气,但尚不清楚是否涉及其他机制(即干细胞动员和细胞因子调节)。最近的研究表明,相对较低的氧张力(PIO2)可以产生显着的生物学反应(Maclaughlin等,2019; Maclaughlin等,2023; Miller等,2015; Cifu等,2014)。
Structural and spectroscopic correlation in barium-boro-tellurite glass hosts: effects of Dy 2 O 3 doping S. F. Hathot a,* , B. M. Al Dabbagh a , H. Aboud b a Applied Science Dep, University of Technology, Baghdad, Iraq b Faculty of science- physics Dep, college of Science, Al-Mustansiriya University, Iraq In this study, a series of通过熔融液化方法制成的含有不同浓度的Dy 2 O 3掺杂(0至1.25 mol%)的钡 - 硼酸盐玻璃宿主是不同的。进行了一项研究,以研究Dy 2 O 3掺杂剂如何影响玻璃的物理和光谱性状。原材料包括氧化钡(BAO),泰他二氧化氢(TEO 2),氧化硼(B 2 O 3)和氧化钠(DY 2 O 3),用于生产这些眼镜。XRD模式显示出宽阔的驼峰和远程周期性晶格排列,表明它们的性质。拉曼光谱分析显示了各种振动模式,其中最强烈的带是由300 cm-1和450 cm-1在TE – O-TE内部链链桥的对称拉伸振动模式对应的最强烈的带引起的。750 cm-1处的峰值是由于TEO 4和TE-O-TE振动模式引起的。光条间隙能的值从3.155降低至2.1894 eV,然后在较高的DY 2 O 3水平(0.75至1.25 mol%)下增加。在390、424、452、452、750、797、895和1092 nm之间观察到0.25至1.25 mol%之间的Div>在0.25至1.25 mol%之间观察到。 使用DUFFY和INGRAM方程计算了所提出的玻璃宿主的光学碱度,随着掺杂含量的增加而降低。。使用DUFFY和INGRAM方程计算了所提出的玻璃宿主的光学碱度,随着掺杂含量的增加而降低。将玻璃折射率从2.3563升至2.6584,然后在较高的DY 2 O 3含量下降低,这主要是由于玻璃基质中产生了更多的桥接氧(BO)。使用Lorentz-lorenz方程计算得出的玻璃电子极化率和氧化离子极化性的值随着DY 2 O 3含量的上升幅度下降,这归因于较少的非桥接氧(NBO)的存在。此外,随着DY +3水平的增加,光传递增加并减少了反射损失。1以下的金属化参数的值证明了制备样品的真实非晶性质。所有玻璃杯均揭示了由于4F9/2→6H15/2而引起的蓝色和黄色光致发光发射峰,分别在DY 3+中分别在4f9/2→6H15/2和4F9/2→6H13/2过渡中。所提出的玻璃成分可能有益于固态激光器的发展。(2023年11月23日收到; 2024年2月22日接受)关键词:DY 2 O 3掺杂,拉曼光谱,结构,吸收,排放1.引言由Teo 2作为宿主制成的泰瑞尔玻璃系统在过去几年中一直引起人们的兴趣,因为与氧化物玻璃杯相比,化学和物理特性增强了。这些玻璃具有较大的热电常数,红外透射率,介电常数和折射率的值。低声子的能量截止点和熔点;非常高的稀土离子溶解度[1]。基于tellute的玻璃也可以用各种稀土元素掺杂,以获得改进的光学特性,这些光学特性是由稀土离子中电子过渡产生的。当将稀土离子添加到洁牙液玻璃中时,它们可能会导致网络结构的变化,包括形成稀土氧化物簇或具有氧原子的稀土离子的配位2 [2,3]。可以通过结构变化来修改此类玻璃的光谱属性,表明这些特性之间由稀土元素控制的这些特性之间存在很强的相关性。带有稀土离子的tellurite玻璃