摘要天气研究和预测(WRF)模型被用作嵌套的区域气候模型,以研究巨型风电场对美国东部三分之二的温季降水的影响。WRF的边界条件由NCEP/NCAR 62年(国家环境预测中心/国家大气研究中心)提供了全球重新分析。在模型中,巨型或小的中西风的存在可能会对一个季节的天气和降水量产生巨大影响,这与对初始条件的长期天气预测的已知敏感性一致。对气候的影响不太强烈。在62个温暖季节的平均降水量中,统计学上有显着的1.0%在周围和风电场东南部的多州区域的降水量增强。
预先注册的参与者:开尔文·德罗格梅尔(伊利诺伊大学),安德烈亚斯·普雷因(NCAR,主席),弗兰克·亚历山大(Argonne National Laboratory),Dee A Bates(伊利诺伊州Urbana-Champ),Christopher S. Brethertherthertry(Christopher S. Bretherton Instute) Chipilski(佛罗里达州立大学),Peter Dueben(ECMWF),Dale Durran(华盛顿大学),Pedram Hassanzadeh(芝加哥大学),Daniel S Katz,Daniel S Katz(伊利诺伊州Urbana-Champaign)玛格德堡(Magdeburg),Ruby Leung(Pacific Northwest National Laboratory),Maria Molina(马里兰州大学公园主席),John Shalf(劳伦斯·伯克利国家实验室),Maike Sonnewald(加利福尼亚大学戴维斯大学),邓肯·戴维斯大学,邓肯·沃森·帕里斯(duncan wats of Classion of oliver watt-mey and Instement and Instem and Instem and Insterme <预先注册的参与者:开尔文·德罗格梅尔(伊利诺伊大学),安德烈亚斯·普雷因(NCAR,主席),弗兰克·亚历山大(Argonne National Laboratory),Dee A Bates(伊利诺伊州Urbana-Champ),Christopher S. Brethertherthertry(Christopher S. Bretherton Instute) Chipilski(佛罗里达州立大学),Peter Dueben(ECMWF),Dale Durran(华盛顿大学),Pedram Hassanzadeh(芝加哥大学),Daniel S Katz,Daniel S Katz(伊利诺伊州Urbana-Champaign)玛格德堡(Magdeburg),Ruby Leung(Pacific Northwest National Laboratory),Maria Molina(马里兰州大学公园主席),John Shalf(劳伦斯·伯克利国家实验室),Maike Sonnewald(加利福尼亚大学戴维斯大学),邓肯·戴维斯大学,邓肯·沃森·帕里斯(duncan wats of Classion of oliver watt-mey and Instement and Instem and Instem and Insterme <
AFFILIATIONS Duke University: Drew Shindell, Yuqiang Zhang, Karl Seltzer, Muye Ru, Rithik Castelino, Krista Stark, Jared Junkin, Gray Li, Alex Glick NASA Goddard Institute for Space Studies/Columbia University: Greg Faluvegi Geophysical Fluid Dynamics Laboratory (GFDL): Vaishali Naik, Larry Horowitz, Jian He National Center for Atmospheric Research (NCAR): Jean-Francois Lamarque Nagoya University: Kengo Sudo University of Reading: William J. Collins Stockholm Environment Institute (SEI): Johan Kuylenstierna, Chris Malley, Eleni Michalopoulou Colorado State University, Fort Collins: A. R. Ravishankara International Institute for Applied Systems Analysis (IIASA): Lena霍格伦德 - 伊萨克森荷兰环境评估局(PBL):Mathijs Harmsen气候和清洁空气联盟(CCAC):Nathan Borgford-Parnell
1*英国布里斯托尔布里斯托尔大学地理科学学院。2气候和全球动力学实验室,美国大气研究中心(NCAR),美国博尔德。3英国伦敦大学学院(UCL)地理系。 4地球和环境学院,利兹大学,英国利兹。 5英国南安普敦南安普敦大学海洋与地球科学学院。 6 Laboratoire des Sciences du climat et de l'Orvironnement / Institut Pierre-Simon Laplace(LSCE / IPSL),CEA-CNRS-UVSQ,paris saclay Universit'e Paris Saclay,Gif Sur Yvette,法国,法国。 7地球与可持续发展学校,美国北亚利桑那大学,美国弗拉格斯塔夫。 8 METEOROGAS INSUCITIONAN(MISU),斯德哥尔摩大学,斯德哥尔摩,瑞典。 9英国达勒姆大学达勒姆大学地理系。 10,英国纽卡斯尔的诺森比亚大学地理和环境科学。 11地球科学系,亚利桑那大学,美国图森。3英国伦敦大学学院(UCL)地理系。4地球和环境学院,利兹大学,英国利兹。 5英国南安普敦南安普敦大学海洋与地球科学学院。 6 Laboratoire des Sciences du climat et de l'Orvironnement / Institut Pierre-Simon Laplace(LSCE / IPSL),CEA-CNRS-UVSQ,paris saclay Universit'e Paris Saclay,Gif Sur Yvette,法国,法国。 7地球与可持续发展学校,美国北亚利桑那大学,美国弗拉格斯塔夫。 8 METEOROGAS INSUCITIONAN(MISU),斯德哥尔摩大学,斯德哥尔摩,瑞典。 9英国达勒姆大学达勒姆大学地理系。 10,英国纽卡斯尔的诺森比亚大学地理和环境科学。 11地球科学系,亚利桑那大学,美国图森。4地球和环境学院,利兹大学,英国利兹。5英国南安普敦南安普敦大学海洋与地球科学学院。 6 Laboratoire des Sciences du climat et de l'Orvironnement / Institut Pierre-Simon Laplace(LSCE / IPSL),CEA-CNRS-UVSQ,paris saclay Universit'e Paris Saclay,Gif Sur Yvette,法国,法国。 7地球与可持续发展学校,美国北亚利桑那大学,美国弗拉格斯塔夫。 8 METEOROGAS INSUCITIONAN(MISU),斯德哥尔摩大学,斯德哥尔摩,瑞典。 9英国达勒姆大学达勒姆大学地理系。 10,英国纽卡斯尔的诺森比亚大学地理和环境科学。 11地球科学系,亚利桑那大学,美国图森。5英国南安普敦南安普敦大学海洋与地球科学学院。6 Laboratoire des Sciences du climat et de l'Orvironnement / Institut Pierre-Simon Laplace(LSCE / IPSL),CEA-CNRS-UVSQ,paris saclay Universit'e Paris Saclay,Gif Sur Yvette,法国,法国。7地球与可持续发展学校,美国北亚利桑那大学,美国弗拉格斯塔夫。8 METEOROGAS INSUCITIONAN(MISU),斯德哥尔摩大学,斯德哥尔摩,瑞典。9英国达勒姆大学达勒姆大学地理系。 10,英国纽卡斯尔的诺森比亚大学地理和环境科学。 11地球科学系,亚利桑那大学,美国图森。9英国达勒姆大学达勒姆大学地理系。10,英国纽卡斯尔的诺森比亚大学地理和环境科学。11地球科学系,亚利桑那大学,美国图森。11地球科学系,亚利桑那大学,美国图森。
1.3 管理人员 本章应通过列出责任经理和所有指定人员的职称和姓名来确定组织的维护管理人员。应选择/确定“指定人员”组,以便所有 NCAR Part-145 功能均涵盖在其各自的职责范围内,并且应使用 CAAN 表格 4 向 CAA Nepal 提交其证书。MOE 第 1.3 章需要随时与 MOE 第 1.4 章和 1.5 章保持一致,并应代表组织维护管理结构的最新描述。1.3.1 责任经理; 1.3.2 指定人员; 1.3.3 副指定人员; 1.3.4 经理(如适用); 1.3.5 负责 NDT 3 级*(如适用)。a) 检查提名职位持有人的头衔和姓名是否符合
会议时间:2024年冬季(从1月/10/2024开始)Mowefr 3:30-5:20pm(有时4:50 pm)1012 EEC(通常每周两次见面两次,有时每周3次,每周3次,以弥补一些损失的时间(旅行,一些较短的婚礼教练):Christiane jablonowsem jablonowski nigronoveig jablonowski nigronoveig nigronoveig nigronoveig nigh ofernowski nigronoveig nigronoveig nigh nigno of incy nigronoveig nigron。气候和空间科学和工程简短目录描述:该课程通过调查大气通用循环模型(GCM)的设计决策,GCM和Dynamilical Core建模的趋势以及GCM的方式来介绍最新的气候建模技术它是基于动手的GCM建模和数据项目,期刊论文讨论,讲座,共享网络基础结构和计算工具。长描述:1)概要:课程以最新的气候建模技术训练研究生。它调查了大气一般循环模型(GCM)中的许多设计决策,GCM和动态核心建模的趋势以及GCM与地球系统模型(ESM)中的陆地,海洋和冰分的耦合。此外,下一代ESM将需要具有更大的计算功能,具有可交换模型组件的透明软件设计,数据和模型的自我解释(元数据)描述,数据交换的在线网关和门户,云计算功能以及共享的科学协作的在线工作工作。学生将学习如何为气候和天气科学有效地使用现代软件基础架构和高性能计算系统(例如NCAR的DERECHO系统)。该课程将审查和利用各种气候和天气模型(例如社区地球系统模型(CESM)或由国家大气研究中心(NCAR)开发的跨尺度(MPA)的模型,能源部(DOE)Energy Exascale Exascale Exascale Excale地球系统模型(E3SM),或NOAA AAA的统一预测系统(UFS)和计算工具)。2)课程的总体目标:本课程完成后,GCM将不再是黑匣子。将使学生能够就如何在研究中使用GCMS以及GCM的局限性做出明智的决定。学生将接触到现实世界中的GCM和大气科学的软件实践,并将了解GCM设计文献和模型文档。
a NorthWest Research Associates, Boulder, Colorado b J ¨ ulich Supercomputing Centre, Forschungszentrum J ¨ ulich, J ¨ ulich, Germany c Met Of fi ce, Exeter, United Kingdom d ECMWF, Reading, United Kingdom e Climate and Global Dynamics Laboratory, NCAR, Boulder, Colorado f Laboratoire de M ´ et ´ eorologie Dynamique, Ecole Polytechnique,Palaiseau,法国G大气物理系,数学与物理学系,查尔斯大学,布拉格,捷克共和国h气象与气候学研究所(BOKU)(BOKU)自然资源与生命科学大学,维也纳大学,维也纳,维也纳,维也纳,维也纳,奥地利,澳大利亚,水平科学,大气层,大气层,大气层,大气层,水平科学。东京,东京,日本K大气层和海洋研究所,东京大学,日本喀什瓦瓦大学,d deutsches zentrum f ur luftsches zentrum f ur luft- und raumfahrt,oberpfaffenhofen,oberpfaffenhofen,oberpfaffenhofen,德国forschungszentrum j ulich,j ulich,德国
气候变化的轨迹” NSFAGS-2235177,C。Deser(NCAR)和G. Persad(Austin U. Texas),Co-Pis,2/23-1/25,$ 985K($ 173K to Ncar)。出版物(按时间顺序分顺序)224。Deser,C.,A。S. Phillips,M。A. Alexander,D。J. Amaya,A。Capotondi,M。G. Jacox和J. D. Scott,2024年:海洋热和冷浪的强度和持续时间的未来变化:来自耦合模型模型初始条件大型合奏的见解。J.气候,37,1877-1902,doi:10.1175/jcli-d-23-0278.1。223。Hwang,Y。T.,S。-P。 Xie,P。-J。 Chen,H. -y。 Tseng和C. Deser,2024年:人为气溶胶在21世纪初期对LaNiña的持续状态的贡献。proc。natl。学院。SCI。 U.S.A.,121,(5),DOI:10.1073/pnas.2315124121。 222。 Peng,Q.,S。-P。 Xie,G。Passalacqua,A。Miyamoto和C. Deser,2024年:2023年沿海ElNiño:大气和空气耦合机制。 SCI。 adv。 ,10,EADK8646(2024)。 doi:10.1126/sciadv.adk8646。 221。 Lenssen,N.,P。Dinezio,L。Goddard,C。Deser,Y。Kushmir,S。Mason,S。Mason,M。Newman和Y. Okumura,2023年:强大的El Nino事件导致了强大的多年ENSO可预测性。 地球。 res。 Lett。 ,在印刷中。 220。 Jenkins,M。T.,A。Dai和C. Deser,2023年:PAMIP模拟中对局部海冰浓度和远程海面温度变化的北极气候反馈反应。 攀登。 dyn。 ,正在审查。 219。 J. 218。SCI。U.S.A.,121,(5),DOI:10.1073/pnas.2315124121。 222。 Peng,Q.,S。-P。 Xie,G。Passalacqua,A。Miyamoto和C. Deser,2024年:2023年沿海ElNiño:大气和空气耦合机制。 SCI。 adv。 ,10,EADK8646(2024)。 doi:10.1126/sciadv.adk8646。 221。 Lenssen,N.,P。Dinezio,L。Goddard,C。Deser,Y。Kushmir,S。Mason,S。Mason,M。Newman和Y. Okumura,2023年:强大的El Nino事件导致了强大的多年ENSO可预测性。 地球。 res。 Lett。 ,在印刷中。 220。 Jenkins,M。T.,A。Dai和C. Deser,2023年:PAMIP模拟中对局部海冰浓度和远程海面温度变化的北极气候反馈反应。 攀登。 dyn。 ,正在审查。 219。 J. 218。U.S.A.,121,(5),DOI:10.1073/pnas.2315124121。222。Peng,Q.,S。-P。 Xie,G。Passalacqua,A。Miyamoto和C. Deser,2024年:2023年沿海ElNiño:大气和空气耦合机制。SCI。 adv。 ,10,EADK8646(2024)。 doi:10.1126/sciadv.adk8646。 221。 Lenssen,N.,P。Dinezio,L。Goddard,C。Deser,Y。Kushmir,S。Mason,S。Mason,M。Newman和Y. Okumura,2023年:强大的El Nino事件导致了强大的多年ENSO可预测性。 地球。 res。 Lett。 ,在印刷中。 220。 Jenkins,M。T.,A。Dai和C. Deser,2023年:PAMIP模拟中对局部海冰浓度和远程海面温度变化的北极气候反馈反应。 攀登。 dyn。 ,正在审查。 219。 J. 218。SCI。adv。,10,EADK8646(2024)。doi:10.1126/sciadv.adk8646。221。Lenssen,N.,P。Dinezio,L。Goddard,C。Deser,Y。Kushmir,S。Mason,S。Mason,M。Newman和Y. Okumura,2023年:强大的El Nino事件导致了强大的多年ENSO可预测性。地球。res。Lett。 ,在印刷中。 220。 Jenkins,M。T.,A。Dai和C. Deser,2023年:PAMIP模拟中对局部海冰浓度和远程海面温度变化的北极气候反馈反应。 攀登。 dyn。 ,正在审查。 219。 J. 218。Lett。,在印刷中。220。Jenkins,M。T.,A。Dai和C. Deser,2023年:PAMIP模拟中对局部海冰浓度和远程海面温度变化的北极气候反馈反应。攀登。dyn。,正在审查。219。J.218。Gervais,M。L. Sun和C. Deser,2024年:预计的北极海冰损失对北美日常天气模式的影响。气候,37,1065–1085,https://doi.org/10.1175/jcli- D-23-0389.1。Zhang,X。和C. Deser,2023年:自1949年以来观察到的南大洋变暖和冷却趋势的热带和南极海冰影响。NPJ攀登。 Atmos。 SCI。 ,正在审查。 217。 Amaya,D。J.,N。Maher,C。Deser,M。G. Jacox,M。Newman,M。A. Alexander,J。Dias和J. Lou,2023年:未来的季节性气候可预测性变化。 J. 气候,正在审查中。 216。 Hall,R。J.,A。Czaja,G。Danabasoglu,C。Deser,C。C. Frankignoul和Y. -o。权,2023年:Oyashio延伸海面温度前端的新的强大额叶干扰指数。 J. 气候,正在审查中。NPJ攀登。Atmos。SCI。 ,正在审查。 217。 Amaya,D。J.,N。Maher,C。Deser,M。G. Jacox,M。Newman,M。A. Alexander,J。Dias和J. Lou,2023年:未来的季节性气候可预测性变化。 J. 气候,正在审查中。 216。 Hall,R。J.,A。Czaja,G。Danabasoglu,C。Deser,C。C. Frankignoul和Y. -o。权,2023年:Oyashio延伸海面温度前端的新的强大额叶干扰指数。 J. 气候,正在审查中。SCI。,正在审查。217。Amaya,D。J.,N。Maher,C。Deser,M。G. Jacox,M。Newman,M。A. Alexander,J。Dias和J. Lou,2023年:未来的季节性气候可预测性变化。J.气候,正在审查中。216。Hall,R。J.,A。Czaja,G。Danabasoglu,C。Deser,C。C. Frankignoul和Y. -o。权,2023年:Oyashio延伸海面温度前端的新的强大额叶干扰指数。 J. 气候,正在审查中。Hall,R。J.,A。Czaja,G。Danabasoglu,C。Deser,C。C. Frankignoul和Y.-o。权,2023年:Oyashio延伸海面温度前端的新的强大额叶干扰指数。J.气候,正在审查中。
2023 Wiley在JGR中获得Vanderkelen等人,2021年的下载文章奖:2022年2022年“陪审团的费用”在PhD论文中的区别(VUB的最高2%PHD工程学院,VUB)2022 CESM研究生奖,获得NCAR气候和全球动态实验室的贡献,该奖项的实施,在CERITAN中,在CERITAN中撰写了密钥贡献,该公司在CESS中涉及密钥贡献。绿色影响国际特别奖项的区域决赛选手,可持续性英雄2021 Andrew Slater奖最佳研究生奖奖在LMWG年会上贡献[$ 500] 2020年奖伯爵基金会(King Baudouin Foundation)颁发的欧内斯特·杜波依(Ernest Dubois [500欧元] 2018 2018 Flemish SuperComputer Center Day [400 Node Days] 2018 EGU EGU突出显示文章奖范德克伦等人。(2018a和B,Hydrol。地球系统。Sci。)。2017年地理学中最佳MSC论文,由校友地理和旅游业授予[200欧元]
对第29个南部非洲地区气候前景论坛(SARCOF-29)的陈述是2024年8月26日至26日在混合模式下举行的第29个南部非洲地区气候展望论坛(SARCOF-29),以在SADC地区呈现2024/2025降雨季节的共识前景。来自非洲发展共同体国家气象和/或水文服务(NMHSS)的气候专家和非洲发展共同体气候服务中心(CSC)提出了这种前景。的投入是从非洲气象发展中心(ACMAD)和全球生产中心(GPCS)获得的,即欧洲中型天气预报中心(ECMWF),国家海洋与大气管理局(NOAA),北京北部气候中心(BCC),Météo-France,Méténianianopartial operation,Meterology of Meterology,Meteerology,Meterology,Meterolology,Meterologicy,Meterolology of Meterolology (JMA)和韩国气象局(KMA)。这项工作还使用了国际气候与社会研究所(IRI)和国家大气研究中心(NCAR)的投入。此Outlook涵盖了2024年10月至2025年3月的主要降雨季节。在三个月的重叠期间,展望出现如下:10月至11月至12月(OND)2024; 11月至12月至1月(NDJ),12月至1月1日(DJF)和1月至5月3月2025年。