meCA -MRSA通过PCR靶向SA-442物种特异性片段和MECA基因(6,7)。我们使用PCR(8,9),与LUKF/ LUKS-PV基因的隶属关系和存在。我们通过使用磁盘扩散方法对抗生素抗性进行了表型检测,并根据欧洲抗菌敏感性测试版本14.0(10)提供的指南来解释结果。我们使用核素体微生物DNA隔离试剂盒提取DNA(Machery-Nagel,https://www.mn-net.com)。图书馆的准备和全基因组排序被外包给Eurofins(德国体育馆),其中使用了Illumina Novaseq6000技术(https:// www.illumina.com)。读取质量质量并通过使用Shovill v1.0.4(https://github.com/tseemann/shovill)来从头组装,我们通过使用quard v5.0.2(https://quast.sourceforge.net)评估了组装质量。We performed typing by using MLSTFinder v2.0.9 and spaTyper (Genomic Epidemiology Cen- ter, http://www.genomicepidemiology.org) and identified resistance and virulence genes by using ResFinder 4.1 and VirulenceFinder v2.0.3 (Genomic Epidemiology Center) (identity >95%) and confirmed resistance genes通过使用卡3.2.9。(https://card。mcmaster.ca)。我们通过使用bakta 1.9.1(https://bakta.computational.bio)来表征转座TN 554的遗传环境。要比较主体,我们使用了国家生物技术信息中心(NCBI)BLASTN工具(https:// bast。ncbi.nlm.nih.gov)。,我们通过使用Roary以前出版的繁殖(6)(Roary v3.13.0,Gubbins v2.4.1和SNP-Dist v0.7.0; https:/https://github.com)在所有CC398 PVL-Posistive rypseques tripseq:
金枪鱼是属于Scombridae家族的物种。灰玉米棒,利胡玉米棒,科莫·科布斯和克雷·科布斯有几种类型的金枪鱼。在形态上,金枪鱼物种彼此相似。这可能会在确定金枪鱼物种的产生时在田间记录时会导致错误。这项研究的目的是使用COI基因(细胞色素C氧化酶亚基I)确定kedonganan鱼市场的金枪鱼物种。从巴厘岛Badung的Kedonganan鱼市场购买了两种汤哥鱼。DNA提取是使用CHELEX从鱼鳍中进行的,然后进行COI基因的扩增。然后将PCR产物进行电泳并分散。使用NCBI(国家生物技术信息中心)中包含的基本局部比对搜索工具(BLAST),将DNA续集与数据库匹配。提取产生浓度为5.91 ng/ l的DNA,样品1的A260/ A280 = 1.3比例,而对于样品2 DNA的浓度为6.27 ng/L,A260/ A280的比例为6.27 ng/L。最终的PCR产品约为700bp。COI基因序列的结果均为两种鱼类的682 bp基因产生。BLAST分析与Komo(Euthynnus affinis)和Lisong(Auxis Rochei)Cob产生了99.84-100%的身份百分比。
图:图1。PMSU2DR-02 T-DNA的线性图。 图2。 A。农杆菌根源菌株Arport1中PMSU2DR-02的圆形图。 B. tumefasciens菌株ATJGT105中PMSU2DR-02的圆形图。 图3。 PMSU2DR-02 T-DNA插入物的序列。 表列表:表1。 基因供体生物的分类分类表2。 pMSU2DR-02缩写和定义的DNA插入物的遗传元素:ARPORT1:含有gaantry基因在毒力质粒中堆叠所需的遗传成分的根状腺根源菌株。 直接用于植物转化。 cc-nb-lrr:N末端盘绕圈(CC)结构域,核苷酸结合位点(NB)和富含亮氨酸的重复序列(LRRS)EHA105:EHA105 tumefaciens菌株对土豆和其他植物的转基因作用有用。 gaantry:使用重组酶技术HS中的核酸转移基因组装HS:高度敏感的反应JGT105:Tumefaciens JGT105 Gaantry菌株,该菌株是tumefaciens eha105的衍生物,含有基因组成的群体。 直接用于植物转化。 LB: Left Border MOA: Mechanism of Action MSU: Michigan State University NCBI: National Center for Biotechnology Information NPTII: Neomycin phosphotransferase II ONT: Oxford Nanopore Technology ORF: Open Reading Frame PCR: Polymerase Chain Reaction PLRV: Potato Leaf Roll Virus PVY: Potato Virus Y R genes: Resistance genes RB: Right Border RSR: Regulatory Status Review T-DNA:转移DNAPMSU2DR-02 T-DNA的线性图。图2。A。农杆菌根源菌株Arport1中PMSU2DR-02的圆形图。B. tumefasciens菌株ATJGT105中PMSU2DR-02的圆形图。图3。PMSU2DR-02 T-DNA插入物的序列。表列表:表1。基因供体生物的分类分类表2。pMSU2DR-02缩写和定义的DNA插入物的遗传元素:ARPORT1:含有gaantry基因在毒力质粒中堆叠所需的遗传成分的根状腺根源菌株。直接用于植物转化。cc-nb-lrr:N末端盘绕圈(CC)结构域,核苷酸结合位点(NB)和富含亮氨酸的重复序列(LRRS)EHA105:EHA105 tumefaciens菌株对土豆和其他植物的转基因作用有用。gaantry:使用重组酶技术HS中的核酸转移基因组装HS:高度敏感的反应JGT105:Tumefaciens JGT105 Gaantry菌株,该菌株是tumefaciens eha105的衍生物,含有基因组成的群体。直接用于植物转化。LB: Left Border MOA: Mechanism of Action MSU: Michigan State University NCBI: National Center for Biotechnology Information NPTII: Neomycin phosphotransferase II ONT: Oxford Nanopore Technology ORF: Open Reading Frame PCR: Polymerase Chain Reaction PLRV: Potato Leaf Roll Virus PVY: Potato Virus Y R genes: Resistance genes RB: Right Border RSR: Regulatory Status Review T-DNA:转移DNA
摘要 当今医学界正处于人工智能时代,人工智能的开发和普及得益于 2019 年冠状病毒病 (COVID-19) 大流行,这为人工智能在分析医疗数据和提供非常准确的结果方面发挥更大影响力提供了空间。这门科学当之无愧地在医护人员中占据了极好和重要的地位,由于其在实际决策中具有巨大的潜力,它已成为医护人员工作中必不可少的要素。由于智能系统能够分析大数据并给出准确的结果,旨在改善公民的健康状况并挽救他们的生命,因此在医疗领域使用智能系统的前景在卫生部门中被视为至关重要。在本文中,重点介绍了一组有关人工智能在医学领域的重要作用的重要信息。此外,该科学如何通过强调一系列调查和分析来应对 SARS‐CoV-2,这些调查和分析在预测病毒传播、追踪感染和通过 COVID-19 患者的胸部 X 光图像诊断病例方面发挥了作用。本文的数据库涵盖了 2020 年至 2021 年之间的 40 多项研究,并研究了利用人工智能技术分析 SARS‐CoV-2 数据的效果。这些研究来自 PubMed、NCBI、谷歌学术、Medrxiv 和其他网站。本文包含大量有关人工智能和 SARS‐CoV-2 的信息。研究结果证实,人工智能在医疗保健领域发挥着重要作用,建议在决策方法中使用其应用。
摘要:基因组是一个分子生物学的跨学科领域,通过解码生物生物进行数据分析来研究生物基因组的结构,功能,进化,映射和编辑。您与人工智能的界面已经从大数据方法中的深度学习(DL)策略加剧,而夹紧的调节性的散布式植物(CRISPR)混乱系统(CRISPR)在生物技术和医学中出现了革命性的可能性。的目标是描述应用于功能基因组和CRISPR遗传编辑系统的人工智能的使用概况。这是一项范围审查,根据Scielo,NCBI/PubMed®,Science Direct选择了2020 - 2024年的文章。使用助记符PCC组合(种群,上下文,概念)来定义研究的指导问题。根据清单首选的报告项目的指南进行了审查,用于系统评价和荟萃分析的剪裁评论(PRISMA-SCR)。包括20篇符合研究标准的文章,并在分析了有关人工智能(IA)和OMIC科学联系的内容之后,就机器学习协助的技术的提高和技术的提高而取得了明显的进步。得出的结论是,受过训练的算法允许在大容量开采中进行机器学习,并提供了预测性,更准确的分析,并超越了传统方法。AI扩大了OMIC科学和收入中技术设备的能力;在CRISPR系统中,系统以准确的标准和对指南RNA设计的理解超过了传统方法。
神经嵴细胞基因控制神经嵴细胞向发育中的脊椎动物胚胎多个部分的迁移。最近有一个假设认为,家养动物特有的“驯化综合症”是由对神经嵴细胞基因(特别是影响细胞迁移的基因)的驯化选择所驱动。这可以解释为什么这种综合症涉及许多不同的表型效应。这些影响可能与神经嵴细胞迁移缺陷有关。该假设预测,家养物种和相关野生物种对这些神经嵴细胞基因的选择模式将有所不同。具体而言,它预测与密切相关的野生物种相比,家养物种对这些基因的正向选择水平更高。在这里,我们在比较框架中测试了这一预测。我们从公共数据库 (NCBI) 中获得了 30 种家养脊椎动物和仍处于野生状态的匹配近亲的 11 个关键神经嵴细胞基因的 DNA 序列。我们利用 HyPhy 软件套件中的 Contrast-FEL 程序,在系统发育框架中比较了这两种分类群中正向选择的位点数量(以跨密码子的非同义核苷酸到同义核苷酸替换率来衡量)。我们发现,相对于与其密切相关的野生谱系,驯化谱系对这些关键基因表现出始终更高的正向选择水平。此外,我们还发现了放宽选择和纯化选择的证据。我们认为,这一结果与这些基因在驯化综合征中的重要作用相一致。
摘要:背景:使用基因组数据,我们确定了MRSA ST398分离株的起源,该分离物是无知的牲畜接触患者的侵入性感染。方法:我们使用Illumina Technique测序了2013年至2017年之间具有侵入性感染患者的七个MSSA和四种MRSA ST398分离株的基因组。预言相关的毒力基因和耐药基因。为了确定分离株的起源,其基因组序列被包括在系统发育分析中,还包括NCBI上可用的ST398基因组。结果:所有分离株都带有ϕ SA3预言,但是免疫逃避簇的变化:MRSA分离株中的C型,MSSA分离株中的B型B型。所有MSSA都属于SPA Type T1451。MRSA菌株具有相同的SCC MEC类型IVA(2B)盒式盒子,属于SPA型T899,T4132,T1939和T2922。所有MRSA都携带四环素抗性基因TET(M)。系统发育分析表明,MSSA分离株属于人类相关的分离株,而MRSA分离株属于含有牲畜相关的MRSA的簇。结论:我们表明临床分离株MRSA和MSSA ST398具有不同的起源。通过牲畜相关的MRSA分离株对毒力基因的获取使它们能够在人类中诱导侵袭性感染。
摘要:简介:皮肤稳态与营养不良之间的双向联系,以及肠道微生物群的影响及其对皮肤等远处器官(例如皮肤)的免疫调节潜力的影响,已成为不断扩大的研究领域,伴随着人口老化的现象,可以预防策略娱乐的发展,并延迟娱乐的发展。以健康的方式按时间顺序排列。材料和方法:这是对文献的叙述性回顾,使用了皮肤老化,肠道营养不良,肠道微生物群,肠,肠,肠,益生菌和益生菌轴的描述符。被调查的电子数据库是NCBI,PubMed,Scielo和Google Scholar。调查是在2024年3月至2024年11月之间的英语和葡萄牙语进行的。总共将25篇文章用作有关研究的基础。理论参考:微生物群失衡,称为营养不良,会损害免疫功能和皮肤健康,导致皮肤衰老。饮食和药物等因素会影响营养不良及其与衰老的关系。最近的研究证实了肠道轴轴的存在,在这种情况下,益生元和益生菌对这种相互作用的调节可以促进皮肤健康益处。最终考虑:这项工作有助于未来的研究,以阐明肠道微生物相互作用的机制,尤其是制定新策略和干预措施以防止皮肤过早衰老,以健康的方式延迟年代老化并保持皮肤健康。
摘要:从生态和功能的角度来看,Sanfranciscensis是一种酸味微生物群的重要且主导的细菌种类。尽管该物种在全球酸面团中的不同菌株的普遍存在,但仍需要阐明该物种的遗传多样性背后的驱动因素。在这项研究中,从酸面团样品中分离出14 f。sanfranciscensis菌株,以评估代谢性状的遗传多样性和变异。比较了这14个和31个其他菌株(从NCBI数据库获得)基因组。平均而言,基因组大小和GC含量的值分别为1.31 MBP和34.25%。在45 F. sanfranciscensis菌株中,每个菌株中存在162个核心基因和0至51个独特的基因。核心基因的主要功能与核苷酸,脂质转运和氨基酸以及碳水化合物代谢有关。核心基因的大小占14 F. sanfranciscensis菌株的泛基因组大小的41.18%,即0.70 Mbp为1.70 Mbp。参与碳水化合物利用和抗生素耐药性的14个菌株之间存在遗传变异。此外,还注释了与exodysac-achides生物合成相关的基因,包括epsabd,wxz,wzy。IIA型和IE CRISPR-CAS系统,Pediocin PA-1和Lacticin_3147_A1细菌素操纵子也在F. sanfranciscensis中发现。这些发现可以帮助选择理想的F. sanfranciscensis菌株来开发标准化的启动培养物进行酸面团发酵,并期望为消费者提供更高的质量和营养价值。
收到2023年8月31日; 2023年12月7日接受;于2024年1月4日出版了作者分支:1麦吉尔大学医学系,蒙特利尔,魁北克H4A 3J1,加拿大; 2个细菌共生体进化,加拿大魁北克H7V 1B7,Inrs-Centre-Centre Armand-FrappierSantéBiotechnologie; 3宾夕法尼亚州立大学宾夕法尼亚州立大学动物科学系16802-3500; 4 McGill International TB Center,McGill University,蒙特利尔,魁北克H4A 3S5,加拿大。*信件:路加·哈里森(Luke B.基于参考的对齐;参考基因组。缩写:AIC,Akaike的信息标准; ATCC,美国类型文化收藏;床,浏览器可扩展数据; GATK,基因组分析工具包; Hal,分层对齐; IGV,综合基因组观众; MRCA,最终的共同祖先; MTBC,结核分枝杆菌复合物; NCBI,国家生物技术信息中心; NGS,下一代测序; PGAP,原核基因组注释管道; PHAST,具有空间/时间模型的系统发育分析; Rd,差异区域; RVD,[H37] RV-DETEATION; SNP,单核苷酸多态性; SRA,序列阅读档案; TBD1,结核分枝杆菌 - 特异性缺失1。数据语句:文章或通过补充数据文件中提供了所有支持数据,代码和协议。本文的在线版本可以使用五个补充表和三个补充数据。001165©2024作者