低出生体重(LBW)增加了神经发育障碍(NDDS)的风险,例如注意力缺陷/多活化障碍和自闭症谱系障碍,以及脑瘫,不存在预防性措施。胎儿和新生儿中的神经炎症在NDD中起着主要的致病作用。同时,脐带衍生的间充质基质细胞(UC-MSC)具有免疫调节特性。因此,我们假设在产后早期的全身服用UC-MSC可能会减弱神经炎症,从而阻止NDD的出现。受到轻度子宫内灌注不足的大坝所生的LBW幼崽在单突触反应中表现出明显降低,并且从产后第4天(P4)到P6的刺激频率增加,从而提高了静脉内治疗性,这提示了人类UC-MSSC(1 c-M-Scs)的不良细胞(提示)。在青春期的三座社交测试表明,只有LBW雄性表现出令人不安的社交能力,这往往可以通过UC-MSC治疗来改善。其他参数,包括通过开放式测试确定的参数,并未通过UC-MSC处理可显着改善。血清或脑脊液水平的促炎细胞因子的水平未升高,而LBW幼崽中的血清或脑脊液水平并未升高,UC-MSC治疗不会降低这些水平。总而言之,尽管UC-MSC治疗可防止LBW幼犬过度兴奋,但对NDD的有益效果是边缘的。
摘要:干细胞研究进展迅速,由于其独特的自我更新和多能分化能力,为难治性疾病提供了有希望的治疗方法。干细胞在治疗遗传疾病、神经退行性疾病 (NDD)、心血管疾病和癌症方面发挥着关键作用。在遗传疾病中,将干细胞与 CRISPR-Cas9 等基因编辑工具相结合,可以精确纠正致病基因,而健康的干细胞则通过替换患病细胞来修复组织。对于 NDD,iPSC 可以分化为多巴胺能神经元,以取代受损的脑细胞并增强神经再生。在心血管疾病中,它们促进心肌和血管修复。在癌症中,干细胞增强抗肿瘤免疫力并将药物直接输送到肿瘤部位,从而提高治疗效果。尽管取得了这些突破,但挑战依然存在。高质量干细胞的生产有限,控制分化以防止肿瘤发生仍然至关重要。同种异体移植存在免疫排斥的风险,而使用胚胎干细胞则引发了伦理问题。需要制定监管框架和临床标准来确保安全性和有效性,同时解决道德和患者权利问题。随着不断创新,干细胞疗法将彻底改变医学,为复杂疾病提供新方法并改善全球健康。
Mendelian疾病是由单个遗传基因座中的致病性变异引起的,通常表现为神经发育障碍(NDDS),影响了全球大部分儿科种群。这些疾病以非典型的大脑发育,智力残疾和各种相关的表型特征为特征。基因测试有助于临床诊断,但尚无定论的结果可以延长确认过程。最近对表观遗传失调的关注导致发现与NDD相关的DNA甲基化特征或发作性,从而加速了诊断精度。值得注意的是,参与泛素化途径的基因Trip12和USP7表现出特定的情节。了解这些基因在泛素化途径中的作用阐明了它们对情节形成的潜在影响。Trip12充当E3连接酶,USP7充当去泛素酶,在泛素化中呈现了对比的作用。比较这些基因致病性变异患者的表型性状既揭示了区别和共同点,从而提供了对潜在的病理生理机制的见解。本综述将Trip12和USP7在泛素化途径中的作用,它们对情节形成的影响以及对NDD发病机理的潜在影响。理解这些复杂的关系可能会揭示NDD的新型治疗靶标和诊断策略。
TDP-43蛋白质病是由TDP-43蛋白质的病理细胞质聚集的特征的神经退行性疾病(NDDS)。这些包括肌萎缩性侧索硬化症(ALS),额颞叶变性(FTLD),阿尔茨海默氏病(AD),慢性创伤性脑病(CTE)等。TDP-43在眼中显示出作为这些NDD的生物标志物的希望。 使用免疫组织化学,几项研究鉴定了具有ALS,FTLD,AD,CTE和其他条件的供体的视网膜层中的细胞质TDP-43包含物。 我们的发现表明,人类视网膜中TDP-43的病理聚集体在FTLD-TDP,ALS和CTE中最为普遍,这表明这些疾病可能为研究TDP-43作为视网膜生物标志物的潜力提供了最可靠的背景。 动物模型研究在探索TDP-43在视网膜中的作用方面一直是关键的,包括其核和细胞质定位,RNA结合特性以及与其他蛋白质的相互作用。 尽管有这些进展,但仍需要更多的研究来制定治疗策略。 人类尸检研究的主要局限性是缺乏相应的脑病理评估来确认TDP-43蛋白质病诊断和分期。 其他局限性包括小样本量,缺乏原质子眼病理学和临床历史以及多个NDD的比较有限。 TDP-43作为NDD的视网膜生物标志物的未来方向包括视网膜示踪剂,高光谱成像,动眼和机器学习开发。TDP-43在眼中显示出作为这些NDD的生物标志物的希望。使用免疫组织化学,几项研究鉴定了具有ALS,FTLD,AD,CTE和其他条件的供体的视网膜层中的细胞质TDP-43包含物。我们的发现表明,人类视网膜中TDP-43的病理聚集体在FTLD-TDP,ALS和CTE中最为普遍,这表明这些疾病可能为研究TDP-43作为视网膜生物标志物的潜力提供了最可靠的背景。动物模型研究在探索TDP-43在视网膜中的作用方面一直是关键的,包括其核和细胞质定位,RNA结合特性以及与其他蛋白质的相互作用。尽管有这些进展,但仍需要更多的研究来制定治疗策略。人类尸检研究的主要局限性是缺乏相应的脑病理评估来确认TDP-43蛋白质病诊断和分期。其他局限性包括小样本量,缺乏原质子眼病理学和临床历史以及多个NDD的比较有限。TDP-43作为NDD的视网膜生物标志物的未来方向包括视网膜示踪剂,高光谱成像,动眼和机器学习开发。
神经发育障碍(NDDS)是一组疾病,其中中枢神经系统(CNS)受到干扰,导致不同的神经系统和神经精神科特征,例如运动功能受损,学习,语言,语言或非语言交流。频繁的合并症包括癫痫和运动障碍。DNA测序技术的进步揭示了在越来越多的NDD中鉴定的可识别的遗传原因,强调了需要实验方法研究缺陷基因的需求和与异常脑发育有关的分子途径。然而,通过有限的获取患者衍生的脑组织的机会,可以预防研究特异性分子缺损及其在人脑功能障碍中的靶向方法。在这种情况下,在过去的十年中,干细胞技术和基因组编辑策略的进步导致了大脑器官的三维(3D)体外模型的产生,使人脑发育的精确阶段具有个性化诊断和治疗方法的目的。最近的进展允许生成神经元和非神经元细胞类型的3D结构,并开发全脑或区域特异性大脑器官,以研究体外关键的脑发育过程,例如神经元细胞的形态发生,迁移和连通性。在这篇综述中,我们总结了脑器官技术领域中的新兴方法学方法及其在剖析一系列小儿脑发育障碍的疾病机制的应用,并特别关注自闭症谱系障碍(ASDS)和癫痫性耐药性。
TDP-43蛋白质病是由TDP-43蛋白质的病理细胞质聚集的特征的神经退行性疾病(NDDS)。这些包括肌萎缩性侧索硬化症(ALS),额颞叶变性(FTLD),阿尔茨海默氏病(AD),慢性创伤性脑病(CTE)等。TDP-43在眼中显示出作为这些NDD的生物标志物的希望。 使用免疫组织化学,几项研究鉴定了具有ALS,FTLD,AD,CTE和其他条件的供体的视网膜层中的细胞质TDP-43包含物。 我们的发现表明,人类视网膜中TDP-43的病理聚集体在FTLD-TDP,ALS和CTE中最为普遍,这表明这些疾病可能为研究TDP-43作为视网膜生物标志物的潜力提供了最可靠的背景。 动物模型研究在探索TDP-43在视网膜中的作用方面一直是关键的,包括其核和细胞质定位,RNA结合特性以及与其他蛋白质的相互作用。 尽管有这些进展,但仍需要更多的研究来制定治疗策略。 人类尸检研究的主要局限性是缺乏相应的脑病理评估来确认TDP-43蛋白质病诊断和分期。 其他局限性包括小样本量,缺乏原质子眼病理学和临床历史以及多个NDD的比较有限。 TDP-43作为NDD的视网膜生物标志物的未来方向包括视网膜示踪剂,高光谱成像,动眼和机器学习开发。TDP-43在眼中显示出作为这些NDD的生物标志物的希望。使用免疫组织化学,几项研究鉴定了具有ALS,FTLD,AD,CTE和其他条件的供体的视网膜层中的细胞质TDP-43包含物。我们的发现表明,人类视网膜中TDP-43的病理聚集体在FTLD-TDP,ALS和CTE中最为普遍,这表明这些疾病可能为研究TDP-43作为视网膜生物标志物的潜力提供了最可靠的背景。动物模型研究在探索TDP-43在视网膜中的作用方面一直是关键的,包括其核和细胞质定位,RNA结合特性以及与其他蛋白质的相互作用。尽管有这些进展,但仍需要更多的研究来制定治疗策略。人类尸检研究的主要局限性是缺乏相应的脑病理评估来确认TDP-43蛋白质病诊断和分期。其他局限性包括小样本量,缺乏原质子眼病理学和临床历史以及多个NDD的比较有限。TDP-43作为NDD的视网膜生物标志物的未来方向包括视网膜示踪剂,高光谱成像,动眼和机器学习开发。
抽象动机:人类基因组学的最新进展表明,单个蛋白质中的错义突变会导致明显不同的表型。尤其是,RAS,MEK,PI3K,PTEN和SHP2等癌蛋白中的某些突变与各种癌症和神经发育障碍(NDDS)相连。虽然存在许多用于预测错义突变的致病性的工具,但将这些变体与某些表型联系起来仍然是一个主要挑战,尤其是在个性化医学的背景下。结果:为了填补这一空白,我们开发了质量(蛋白质表型突变分析仪),利用多种可预修建的机器学习方法并整合了多样化的生物物理学和基于网络动态的特征,以预测同一蛋白质突变的范围,可以促进癌症或NDD。我们通过对PI3Kα和PTEN的两种蛋白质病例的突变分析来说明质量在Phe-Notypes(癌/NDDS)预测中的效用。与其他七种预测工具相比,质子表现出了与癌症和考登综合征相关的PI3Kα突变的AUROC 0.8501的预测表型效应方面具有非凡的精度。对于与癌症,PHT和HCP相关的PTEN突变的多型预测,质子可以通过微观触觉实现0.9349的AUC。使用Shap模型的解释,我们对驱动表型形成的机制获得了见解。还提供了一个用户友好的网站部署。可用性:源代码和数据可在https://github.com/spencer-jrwang/protphemut上找到。我们还提供一个用户友好的网站,网址为http://netprotlab.com/protphemut。补充信息:可以在线生物信息学上获得补充数据。图形摘要:
引入编码电压门控钠(Na V)通道的基因中的致病变异在患有早发作,发育和癫痫性脑病(DEE)的个体中经常发现,以及相关的神经发育障碍(NDDS)(NDDS)(1,2)。确定Na V通道变体的功能后果可以提供有关病理生理机制的信息,并可能指导精确的治疗方法(3,4)。使用正确的分子环境(例如,物种起源,剪接同工型)来研究离子通道变体的功能,对于准确的评估至关重要。编码Na V 1.6的SCN8A中的致病变异已成为神经衰变疾病的重要原因,在婴儿期间典型发作(5)。最早发现的DEE与具有功能获得性能的非截断变体(例如增强的持续电流,激活的电压依赖性改变)。随后,在患有临床严重程度较大的表情的个体中发现了SCN8A变体,而没有癫痫发作(6)。在成熟的神经元中,Na V 1.6位于轴突初始段,该通道用于发起动作电位(7)。基因在早期发育过程中经历了特定的替代剪接事件,包括框架内包含2个不同版本的外显子5中的1个,该版本编码了第一个电压 - 感应域的一部分(8)。重要的是,国家生物技术信息中心(NCBI)指定为变体1(NM_014191)的SCN8A参考编码顺序(NM_014191)包括外显子5N,而包括外显子5A的序列为外显子5N在胚胎发育期间和出生后立即占主导地位,但大约1岁的转录本包含替代外显子5A超过含有5N的外显子,并且5A同工型在春季春季占主导地位(9)。
许多染色质调节剂中的突变引起具有未知机制的神经发育障碍(NDDS)。可以理解,大多数研究都集中在染色质调节剂如何控制与脑发育和功能直接相关的基因表达(例如突触基因)。然而,一些NDD模型令人惊讶地显示出大脑种系基因的异位表达。这些种系基因通常仅在生殖细胞发育和性繁殖的原始生殖细胞,睾丸和卵巢中表达。已经报道了几种NDD中的这种异位种系基因的表达,包括免疫效率,cen-细胞不稳定性,面部异常综合征1; Kleefstra综合征1; MECP2重复综合征;和智力低下,X连锁的合成,Claes - Jensen型。负责的基因DNMT3B,G9A/GLP,MECP2和KDM5C,all aste asto contode condy consultation asto contode condiment。因此,这些突变可能导致种系基因的抑制,进而导致脑细胞的严重认同危机 - 可能会干扰诺尔脑发育。因此,种系基因的异位表达是定义该NDD子集的独特标志,进一步暗示了在大脑发育过程中种系基因沉默的重要性。种系基因表达对脑发育的功能影响仍然不确定。这篇观点文章探讨了这种明显的soma-dermlin转化如何出现,以及它如何通过基因组不稳定性和感官纤毛形成受损而干扰神经循环。此外,我们还讨论了如何在实验中测试这些假设,以最终确定异位种系转录物对染色质连接NDD的贡献。
抑郁症是一种慢性精神障碍,其特征是持续情绪低落和兴趣丧失。抑郁症的治疗方法多种多样,但可能不足以治愈。基于药物的治疗方案具有起效慢、生物利用度低和药物副作用等缺点。纳米载体药物输送系统 (NDDS) 因其有助于药物通过血脑屏障并提高生物利用度而受到越来越多的关注,这可能有利于治疗抑郁症。由于纳米载体的粒径和物理化学性质,它有望提高抗抑郁药的稳定性和溶解度,从而提高药物浓度。此外,配体修饰的纳米载体可以作为靶向直接药物释放系统并减少药物副作用。本综述的目的是提供对纳米载体药物输送系统和不同摄入途径的相关抗抑郁药的最新了解,为抑郁症患者的治疗奠定基础。