欢迎 感谢您花时间阅读我们的目录。我们努力协调来自最优质制造商的广泛无损检测设备和用品。在后面的页面中,您将看到业内最优秀的品牌以及射线照相无损检测领域最广泛的设备和配件选择。 选择 - 这是我们 X 射线目录,列出了射线照相无损检测方法中最常见的项目。我们有一个完整的通用目录,其中包含所有其他无损检测方法的产品,我们很乐意根据要求发送给您。 质量 - 我们努力以极具竞争力的价格销售最优质的产品。如果您对所购买的任何产品不是 100% 满意,请告诉我们,以便我们纠正这种情况。 技术人员 - 我们所有的员工都接受过无损检测和我们产品使用的良好培训。如果您对任何产品的使用或操作有任何疑问,或者您需要帮助选择产品,请致电。 交付 - 我们拥有库存充足的仓库设施。我们拥有大量无损检测配件库存,可以当天发货。最后,我们处理从六十万美元的系统到六美分铅信的各种物品。虽然我们不可能为所售的所有物品都制作目录表,但我们会做出以下承诺:“如果您在无损检测或培训过程中使用它,您可以从 DETEK 购买。”工作人员
培训课程大纲已以两份 TECDOC 出版物的形式公布。第一份是 IAEA-TECDOC-407,其中包含五种基本方法的大纲,即液体渗透检测、磁粉检测、涡流检测、射线检测和超声波检测,第二份经修订的大纲是 IAEA-TECDOC-628,其中包括目视检测和泄漏检测等附加方法。IAEA-TECDOC-628 以及包括 ISO 9712 在内的大多数关于无损检测人员培训和认证的国际标准都定义了三个能力等级,即 1 级、2 级和 3 级。其中,1 级最低,3 级最高。中级 2 级被认为最适合那些除其他职责外,还需要独立进行相关无损检测方法的实际检测;制定适用于各种问题的无损检测程序;编写书面说明;按照相关标准和规范做出接受/拒绝决定;能够培训和监督其下属的一级员工,并组织和报告无损检测结果。
1. 引言 工程结构设计以损伤容限准则的实施为基础。该准则假设在制造和生命周期维护操作过程中存在不可检测的缺陷,且不存在任何安全问题 [1,2]。每个结构及其组装件在其使用寿命期间都由设计服务目标保证,并根据航空公司的要求选择材料、设计和特定计算。飞机在使用寿命期间的检查由不同部门根据无损检测方法和材料通过排气计算确定。无损检测 (NDT) 是每个部件内部的关键步骤,可确定检测能力是否满足特定要求。每种 NDT 方法都涉及多个应用参数,量化检测能力的结果因应用而异。
永久安装的结构健康监测 (SHM) 系统现在是传统定期检查(无损检测 (NDT))的可行替代方案。然而,它们的工业用途有限,本文回顾了开发实用 SHM 系统所需的步骤。SHM 中使用的传感器固定在某个位置,而在 NDT 中,它们通常被扫描。目标是使用高时间频率、低空间频率 SHM 数据达到与传统高空间频率和低时间频率 NDT 检查类似的性能。结果表明,这可以通过变化跟踪算法(例如广义似然比 (GLR))来实现,但这取决于输入数据是否为正态分布,这只有在因操作条件变化而导致的信号变化得到令人满意的补偿时才能实现;最近在这个主题上取得了很大进展,本文对此进行了回顾。由于 SHM 系统可以生成大量数据,因此将数据转换为可操作信息至关重要,并且必须在 SHM 系统设计中解决此步骤。验证已安装的 SHM 系统的性能也至关重要,并且已经提出了一种类似于 NDT 中使用的模型辅助检测概率 (POD) (MAPOD) 方案的方法。该方法使用安装在典型未损坏结构上的 SHM 系统获得的测量值来捕获由于环境和其他影响而导致的信号变化
由于Worlton [1]使用羔羊波来非破坏性测试板,因此对NDT中的板波的应用引起了极大的兴趣。羔羊波可在局部化中使用。详细的NDT应用程序。可以通过在适当的频率厚度产品中选择最合适的模式来优化给定缺陷的可检测性。同样,由于它们本质上是二维,因此羔羊波的衰减速度低于3维散装波。,因此可以在相当长的距离内传播。因此。lat-rib波可在远程NDT应用中使用。可以将大型板状结构进行粗略检查。但是。始终存在多个传播羔羊波,并且速度分散通常很明显。因此,耀斑对施加的兴奋剂的响应的时间历史只能用于大约测量羔羊波幅度和ve弹性。因为响应信号的形状将在沿板表面的不同位置处有不同的位置。也是如此。如果羔羊模式的组速度相似,则需要在可以在时域中解析之前,需要坚持的繁殖距离。
我非常高兴和自豪地向您呈现为 NDE2019 准备的纪念品。会议和展览在过去几个月中取得了很大的进展,并吸引了专业人士、研究人员、学者、学生、制造商和服务提供商的热烈响应。组委会对所获得的支持感到高兴,并衷心感谢每一位帮助实现这一目标的个人和组织。来自政府、战略部门和行业的几位高层领导为此次活动送上了最美好的祝愿,并成为这份纪念品的一部分。今年会议的主题是“从检测到预测的 eNDEavours”,它强调了工业检测领域不断变化的趋势,并将为专业人士提供成为推动这一愿景的思想领袖的机会。拥有 800 多名代表、200 多篇论文和 70 多个展位,NDE2019 有望成为 ISNT 的又一个里程碑式活动。今年,我们推出了 NDT Hackathon 和 NDT 问答等新活动,以鼓励学生和其他人更多地参与 ISNT 和 NDT 专业。我们特别感谢所有赞助商、支持者、广告商、参展商、技术论文贡献者、受邀演讲者,当然还有代表们!
1.2. 工艺控制优化 通过选择合适的 AM 方法并优化所用 AM 方法的工艺参数,可以实现质量保证改进。最简单的方法是改变次优工艺类型和工艺参数(包括所选材料)的组合,并反复评估质量,直到达到令人满意的质量。这是一种成本高昂且耗时的方法。但是,操作员可能会在一定操作期后获得足够的经验来减少这些迭代。此方法的准确性和速度还取决于评估技术的准确性;否则,操作员将获得相对不正确的经验。 AM 工艺的工艺参数优化可以利用分析性破坏性测试 (DT) 和/或功能性无损检测 (NDT) 方法。X 射线计算机断层扫描 (X 射线 CT) 技术属于 NDT 方法。文献中报道了材料挤压和喷射工艺的 AM 样品的 DT(拉伸试验)和 NDT(X 射线和超声波)数据之间的相关性。发现相关性是线性的[11],[12]。
纤维增强塑料(或复合材料)由于具有高的特异性刚度和强度而广泛用于许多高级工程结构中。复合材料的主要缺点是它们对内部伤害特征的敏感性。特别是对于层压板,一个小的冲击事件通常会导致几乎看不见的冲击损害(BVID),这可能会影响复合材料的结构完整性。在过去的几十年中,已经开发了和提出了几种非破坏性测试(NDT)方法,以便以有效的方式检测和评估BVID。在这项研究中,对复合材料中的几种最先进的NDT方法进行了比较实验分析(有关几个示例,请参见图1)。在此贡献中研究了以下方法:•使用传输和反射(动态时门控)信号进行超声C扫描•使用平面外和平面外两极化振动同时使用局部缺陷振动LDR•低功率振动振动感电振动vt使用单声音振动以及宽带振动,以及宽带振动,以及宽带振动,以及宽带振动,以及宽带技术(care),以及宽带技术(car)。至ASTM D7136)通过低速度下降重量为6.3 J,导致BVID。对复合材料中对NDT技术的机会和(当前的)局限性进行了批判性研究。这涉及对缺陷可检测性,缺陷大小和缺陷深度估计的评估。
摘要 - 关键基础设施的故障分析和预防对于确保运行可靠性和安全性至关重要。该概念模型探索了先进的无损检测 (NDT) 方法在关键基础设施系统中检测、分析和缓解故障的集成。无损检测技术(例如超声波检测、射线照相术、热成像和声发射分析)可实时洞察结构完整性而不会造成损坏。这些技术能够及早发现裂纹、腐蚀和材料疲劳等缺陷,这些缺陷通常是灾难性故障的前兆。所提出的模型概述了一种将预测分析与无损检测相结合的系统方法,以增强基础设施监控和维护策略。关键组件包括数据采集、预处理、使用机器学习算法进行缺陷分类以及实时决策。结合先进的数据融合技术,整合多种无损检测方法的见解,从而提高缺陷检测的准确性和可靠性。此外,该模型利用数字孪生技术来模拟和预测故障场景,从而实现主动维护和优化资源分配。该模型还强调了结合支持物联网的传感器和基于云的平台进行远程监控和利益相关者之间的实时数据共享的重要性。解决数据安全、可扩展性和测试协议标准化等挑战,以确保在交通、能源和