许多神经肌肉疾病是由导致主导性或功能障碍病理学的主要错义突变引起的。通过药物治疗或基因增强疗法来解决这种疾病的挑战,因为这些策略可能无法消除突变蛋白或RNA的作用。因此,这些主要疾病通常严重缺乏有效的治疗方法,这些疾病通常会导致严重的残疾或死亡。通过基因编辑对主要疾病等位基因的靶向失活是一种有前途的方法,有可能通过单一治疗完全消除病理原因。在这里,我们证明了等位基因特异性CRISPR基因编辑中的轴突charcot- marie-tooth(CMT)疾病的人类模型中,挽救了由神经形丝光链基因(NEFL,CMT 2e)中主导的错义突变引起的病理学。我们利用了一种快速有效的方法来从人类诱导的多能干细胞(IPSC)产生源自CMT2E患者的脊柱运动神经元。患病的运动神经元在分化的早期点概括了已知的病理表型,包括神经丝细胞体中神经丝轻链蛋白的异常积累。我们使用Cas9酶有选择地将患者IPSC的NEFL等位基因灭活,以在致病性N98S突变处引入移封。
许多神经肌肉疾病是由导致主导性或功能障碍病理学的主要错义突变引起的。通过药物治疗或基因增强疗法来解决这种疾病的挑战,因为这些策略可能无法消除突变蛋白或RNA的作用。因此,这些主要疾病通常严重缺乏有效的治疗方法,这些疾病通常会导致严重的残疾或死亡。通过基因编辑对主要疾病等位基因的靶向失活是一种有前途的方法,有可能通过单一治疗完全消除病理原因。在这里,我们证明了等位基因特异性CRISPR基因编辑在人类的轴突charcot-marie-tooth(CMT)疾病的模型中,挽救了由神经手机轻链基因的显性错义突变引起的病理学(NEFL,CMT,CMT类型2E)。我们利用了一种快速而有效的方法来从人类诱导的多能干细胞(IPSC)中产生源自CMT2E患者的脊柱运动神经元。患病的运动神经元在分化的早期点概括了已知的病理表型,包括神经纤维链蛋白在神经元细胞体中的异常积累。我们使用Cas9酶有选择地将患者IPSC的NEFL等位基因灭活,以在致病性N98S突变处引入移封。运动神经元显示出与在ISEGONIC控制中相当的疾病表型的改善,并具有精确的突变校正。这突出了基因编辑的潜力,作为目前不可治疗的主要神经系统疾病的疗法。我们的结果验证了等位基因基因编辑为CMT2E的一种治疗方法,并且是一种有希望的策略,以使杂合丧失功能丧失的任何基因沉默占主导地位的突变。
5。SMA MN中化合物的功能验证我们最近确定了SMA MNS中的过度兴奋性(Liu等,2015)。 SMA MNS触发AP所需的最小电流为+10 PA,而WT MNS则为+40 PA。 化合物SMN-C3不能挽救这种过度兴奋的表型。 6。 ALS的NEFL记者线(a)示意图显示了通过CRISPR技术建立NEFL-NLUC和NEFL-GFP记者线的策略。 (b)NEFL-GFP MN在神经突和骨料中显示出不同的GFP强度。 摘要•我们为SMA和ALS开发了记者IPSC线,可以监测生理水平上疾病相关基因的内源性表达。 •我们开发了一个基于神经元的HTS平台,该平台与神经退行性疾病靶向的细胞更相关。 致谢这项研究得到了NIH-NINDS(NS085689),ALSA GRANT(15IIP194)的支持,部分得到了国家儿童健康与人类发展研究所(P30 HD033352)的核心赠款。 联系Michael HendricksonSMA MN中化合物的功能验证我们最近确定了SMA MNS中的过度兴奋性(Liu等,2015)。SMA MNS触发AP所需的最小电流为+10 PA,而WT MNS则为+40 PA。化合物SMN-C3不能挽救这种过度兴奋的表型。6。ALS的NEFL记者线(a)示意图显示了通过CRISPR技术建立NEFL-NLUC和NEFL-GFP记者线的策略。(b)NEFL-GFP MN在神经突和骨料中显示出不同的GFP强度。摘要•我们为SMA和ALS开发了记者IPSC线,可以监测生理水平上疾病相关基因的内源性表达。•我们开发了一个基于神经元的HTS平台,该平台与神经退行性疾病靶向的细胞更相关。致谢这项研究得到了NIH-NINDS(NS085689),ALSA GRANT(15IIP194)的支持,部分得到了国家儿童健康与人类发展研究所(P30 HD033352)的核心赠款。联系Michael Hendrickson
*通讯作者在:神经肌肉疾病的参考中心和ALS,Chu La Timone,13005法国马赛。电子邮件地址:shahram.attarian@ap-hm.fr(S。Attarian)。缩写:AAV,腺相关病毒; AFO,脚踝矫形器; CMT,Charcot Marie Tooth; CMTN,charcot Marie牙齿神经学评分; CSF1/CSFR1,刺激因子1/刺激因子1受体; CX32,连接蛋白32; EIF2 A,真核引发因子2 a; GABA,γ-氨基丁酸; GJB1,间隙连接蛋白β1; HDAC,组蛋白脱乙酰基酶; HSP,热休克蛋白; ICV,脑室室内;它,室内; MFN,丝曲表示; MNCV,运动神经元速度; MPZ,髓磷脂蛋白零; MTMR,肌管蛋白相关蛋白; NCS,神经传导研究; NEFL,神经感染轻链; nrg,神经糖蛋白; NSAID,非甾体类抗炎性药物; NT-3,Neurotrophin-3; OSA,阻塞性睡眠呼吸暂停; PMP22,周围髓磷脂蛋白22 DA; SC,Schwann Cell; SORD,山梨糖醇脱氢酶; SSRI,选择性5-羟色胺再摄取抑制剂; UPR,展开的蛋白质反应。
轻度创伤性脑损伤 (mTBI) 的累积效应可导致慢性神经损伤,但这种损害背后的分子机制需要进一步研究。使用复制人类 mTBI 的生物力学和头部加速度力的封闭式头部重量坠落模型来探索单次和重复撞击后的急性和慢性结果。成年雄性 C57BL/6J 小鼠被随机分配到四个撞击组之一(对照组;一次、五次和 15 次撞击),这些撞击持续 23 天。在最后一次 mTBI 发生后的 48 小时和 3 个月评估结果。海马空间学习和记忆评估显示,与对照组相比,15 次撞击组在急性期的表现受损,并且在慢性测量时仍然存在。使用定量 RT-PCR 对皮质和海马的脑组织样本进行 mRNA 分析。评估了八个基因,即 MAPT、GFAP、AIF1、GRIA1、CCL11、TARDBP、TNF 和 NEFL,并根据位置和随访持续时间观察其表达变化。皮质和海马表现出对损伤的脆弱性,显示关键的兴奋毒性和炎症基因上调。血清样本显示各组之间的蛋白质磷酸化 tau 和 GFAP 没有差异。这些数据表明,这些影响的累积效应足以诱发 mTBI 病理生理学和临床特征。本研究调查的基因为进一步研究 mTBI 相关神经病理学提供了机会,并可能为开发有助于减轻 mTBI 影响的疗法提供目标。
