摘要 我们研究了卷积神经网络 (CNN) 在加速双栅极 MOSFET 量子力学传输模拟(基于非平衡格林函数 (NEGF) 方法)中的应用。具体而言,给定电位分布作为输入数据,我们实现卷积自动编码器来训练和预测载流子密度和局部量子电容分布。结果表明,在 NEGF 自洽计算中使用单个训练好的 CNN 模型以及泊松方程可以为各种栅极长度产生准确的电位,并且所有这些都在比传统 NEGF 计算短得多的计算时间内完成。 关键词:纳米级 MOSFET、模拟、非平衡格林函数、卷积神经网络、卷积自动编码器 分类:电子器件、电路和模块
摘要 — 我们在此介绍我们在原子模型求解器 ATOMOS 中实现的先进 DFT-NEGF 技术,以探索新型材料和器件(特别是范德华异质结晶体管)中的传输。我们描述了使用平面波 DFT、随后进行 Wannierization 步骤和原子轨道 DFT 的线性组合的方法,分别导致正交和非正交 NEGF 模型。然后,我们详细描述了我们的非正交 NEGF 实现,包括非正交框架内的 Sancho-Rubio 和电子-声子散射。我们还介绍了从第一原理中提取电子-声子耦合并将其纳入传输模拟的方法。最后,我们将我们的方法应用于新型 2D 材料和器件的探索。这包括2D材料选择和动态掺杂FET,以实现最终的小型化MOSFET,vdW TFET的探索,特别是可以实现高导通电流水平的HfS 2 /WSe 2 TFET,以及通过金属半导体WTe 2 /WS 2 VDW结型晶体管的肖特基势垒高度和传输的研究。
摘要:由于其超高的能量转移效率,近场辐射传热显示出在各种新兴技术领域中应用的显着潜力。目前,研究近场辐射传热问题的主要理论框架包括传统的波动电动力学(FE)理论和最近提出的非平衡绿色功能(NEGF)方法。在两种方法中,物体之间的辐射热通量取决于计算物体对外部电磁场的响应函数。本报告介绍了基于密度功能理论的第一原理方法,在不同温度下对物体之间计算近场辐射热通量的方法。它提供了计算公式,其中包括FE和NEGF方法的局部现场效应。使用二维材料(例如石墨烯)作为示例,我们介绍了近场辐射热通量与物体之间的距离以及辐射能谱之间的关系。然后,我们系统地比较了第一原理方法和传统理论模型对诸如石墨烯极化之类的响应函数的影响。最后,我将在完全非平衡条件下的光子电子相互作用引起的统一的能量,动量和角动量转移理论引入开拓性工作。
点的扭转角可以通过改变费米能量、拓扑绝缘体收缩宽度和量子阱带隙来进行调控。27但目前还没有关于分子器件扭转角的系统研究。本文基于非平衡格林函数(NEGF)结合密度泛函理论(DFT),28,29研究了由两个V型锯齿边石墨烯纳米带(GNR)电极连接不同扭转角的CuPc分子构成的CuPc分子器件的量子输运性质。通过改变扭转角可以控制器件的局域自旋态和相关的量子输运性质。结果表明,扭转双层CuPc分子(TTBCPM)的HOMO-LUMO能隙、自旋滤波效率(SFE)和自旋相关电导随扭转角变化。当q较大时,电导和SFE的变化趋势几乎相反。当q=0时电导最大,当q=60时SFE最大,提出了这些现象的物理机制,并通过分析透射光谱、分子能级谱和散射态,进一步理解了具有扭转角的量子传输现象。
低温电子学对许多任务关键型应用至关重要,例如量子计算机和量子传感接口 [1]、太空探索电子设备 [2] 和高性能低温服务器 [3]。计算机辅助设计技术 (TCAD) 为探索低温电子学的设计空间提供了一种非常经济有效的方法,而且最近在低温电子模拟的校准、建模和仿真方法方面取得了巨大进展 [4-7]。然而,低温从头算量子传输模拟对于研究 LG < 20 nm 的器件,特别是其亚阈值行为非常重要,但仍然很困难,尚未系统地研究。众所周知,MOSFET 的 SS 不遵循玻尔兹曼统计 [4-9]。为了了解其起源,需要一个强大的从头算传输模拟装置。据我们所知,文献中还没有关于低温传输的从头算模拟。目前仅开展了使用非平衡格林函数 (NEGF) 的研究 [10] 。本文成功利用从头算模拟研究了 LG = 10 nm 纳米线在低至 3 K 温度下的传输特性。研究了模拟技术,以实现更快、更稳健的模拟。然后研究了纳米线的低温泄漏特性。
摘要 — 本文详细研究了机械应变对过渡金属二硫属化物 (TMD) 材料隧道场效应晶体管 (TFET) 的影响。首先,利用密度泛函理论 (DFT) 的第一原理在元广义梯度近似 (MGGA) 下计算机械应变对 MoSe 2 材料参数的影响。通过在非平衡格林函数 (NEGF) 框架中求解自洽 3D 泊松和薛定谔方程,研究了 TMD TFET 的器件性能。结果表明,I ON 和 I OFF 均随单轴拉伸应变而增加,但 I ON / I OFF 比的变化仍然很小。TMD TFET 中这种应变相关性能变化已被用于设计超灵敏应变传感器。该器件对 2% 的应变显示出 3.61 的灵敏度 (ΔI DS / I DS)。由于对应变的高灵敏度,这些结果显示了使用 MoSe 2 TFET 作为柔性应变传感器的潜力。此外,还分析了应变 TFET 的后端电路性能。结果表明,与无应变 TFET 相比,基于受控应变的 10 级反相器链的速度和能效有显著提高。
能量转移可以三种形式进行:传导,对流和辐射[1]。辐射是特殊的,因为我们不需要转移的材料介质。能量可以在真空中传输。从过去半个世纪的工作开始,已经确定,当物体处于接近范围内时,能量传输会增强[2-4]。许多实验[5-10]和理论计算[11-15]已经验证了这一点。这种接近领域的影响也发现了许多应用[16]。相关的运输现象是术的转移。这是范德华(Van der Waals)或伦敦有吸引力的力量[17]的起源[17],而卡西米尔(Casimir)[18-21]或Casimir-Polder力量[22,23]在考虑到有限的光速时。介电表面上方的原子是一个经典的问题,已被广泛构成[22,24,25]。对身体温度的微妙影响取得了进展[26-30]。到目前为止,即使对于全球非平衡情况,大多数理论发展都基于局部热平衡的含量[4,19],在该平衡中,每个对象仍然满足了流动性分解定理。系统可以通过逻辑上的平衡电导率现象的多普勒移位来建模[31 - 34]。最近仅研究了物体温度梯度的影响[35 - 37]。另一种非平衡转运的方法是用化学偏置修改玻璃功能[38]。这些研究将热辐射与扩散方程式或玻尔兹曼传输理论息息,但仍处于宏观或介绍水平。我们在这里的动机是在微观层面上工作,从物质模型开始,当时电子在某些(晶格)位点跳跃。因此,使用Keldysh非平衡绿色功能(NEGF)形式主义[39 - 42],可以从第一个原理中处理非平衡的AS-pect。