构成不匹配修复缺乏(CMMRD)综合征是由错配修复基因中的双重突变引起的,是最具侵略性的遗传性癌症综合征之一。本报告介绍了被诊断为CMMRD的两个兄弟的临床课程。第一位患者在三岁半的年龄诊断出患有T细胞淋巴瘤,复发和同步胶质母细胞瘤在七岁半。在化学疗法和神经外科治疗后,进行了造血干细胞移植(HSCT)。第二名患者在两岁半时被诊断为纵隔T细胞淋巴瘤,并在四岁半的年龄复发。他还接受了化学疗法并接受了HSCT。两名患者均表现出CaféAuLait Macules(Calms),CMMRD的常见但非特异性特征,通常与1型神经纤维瘤病(NF1)综合征混淆。这项研究强调了CMMRD综合征,相关癌症的表型以及干细胞移植的潜在益处。先前的报告表明,同种异体HSCT可能会减少随后的血液恶性肿瘤并增加生存率。
在过去的几年中,针对 KIT 突变或 PDGFR 突变的胃肠道间质瘤 (GIST) 的原发性和继发性驱动突变的治疗取得了一些进展。GIST 中的主要驱动突变包括 KIT (75%–80%) 和血小板衍生的生长因子受体 α (PDGFRA;8%–10%),一小部分 KIT 和 PDGFRA 突变阴性 (10%–15%),这些突变含有其他分子改变,例如琥珀酸脱氢酶 (SDH) 缺乏症 (大多数)、BRAF 和神经纤维瘤病 1 型 (NF1) 突变。1根据先前的随机研究 2、3,伊马替尼、舒尼替尼和瑞戈非尼分别是三种获批用于不可切除/转移性 GIST 患者的一线、二线和三线治疗的药物(图 1)。最近,监管机构批准利普替尼用于治疗四线胃肠道间质瘤,批准阿伐替尼用于治疗 PDGFR 外显子 18(D842 V)突变的胃肠道间质瘤。伊马替尼耐药可分为原发性耐药和继发性耐药。原发性耐药的主要原因是 D842 V PDGFRA 突变,这构成
摘要:在过去的几年中,人们认识到,神经纤维瘤病相关肿瘤的治疗通常需要采用与自发性肿瘤不同的方法。考虑到持续性、多发性肿瘤和新肿瘤生长的风险,治疗重点已转移到旨在尽量减少症状的治疗。在这篇综述中,我们将重点介绍将临床前数据转化为神经纤维瘤病患者的治疗试验,特别是 1 型神经纤维瘤病和 2 型神经纤维瘤病。成功抑制 1 型神经纤维瘤病和进行性视神经通路胶质瘤或丛状神经纤维瘤患者的 MEK 是患者护理的重大进步。对于恶性 NF1 肿瘤(如高级别胶质瘤和恶性外周神经鞘瘤)尚未取得类似的成功;对于 2 型神经纤维瘤病或神经鞘瘤患者也没有取得重大进展,尽管正在努力。
ABL1、ABL2、AKT1、ALK、APC、AR、ARAF、ARID1A、ARID1B、ATM、ATR、ATRX、BAP1、BARD1、BRAF、BRCA1、BRCA2、BRIP1、C11orf65、CCND1、CDH1、CDK12、CDK4、CDKN2A、CDX2、CHEK1、CHEK2、CSF1R、CTNNB1、DDR2、EGFR、ERBB2、ERBB3、ERBB4、ERCC2、ESR1、EZH2、FANCL、FBXW7、FGFR1、FGFR2、FGFR3、FGFR4、FLT3、FOXA1、FOXL2、GATA3、GNA11、GNAQ、GNAS、HNF1A、HRAS、IDH1、IDH2、INPP4B、 JAK1、JAK2、JAK3、KDM5C、KDM6A、KEAP1、KIT、KRAS、MAP2K1、MAP2K2、MAPK1、MET(外显子 14 跳跃)突变)、MLH1、MPL、MSH2、MSH6、MTOR、MUTYH、MYC、MYCN、MYD88、NF1、NF2、NOTCH1、NPM1、NRAS、NTRK1、NTRK3、PALB2、PBRM1、PDGFRA、PIK3CA、PMS2、POLD1、POLE、PPP2R2A、PTCH1、PTEN、PTPN11、RAD51B、RAD51C、RAD51D、RAD54L、RAF1、RB1、RET、RHEB、RHOA、RIT1、ROS1、SETD2、SF3B1、 SMAD4、SMARCB1、SMO、SPOP、SRC、STK11、TERT、TP53、TSC1、TSC2、VHL
癌症是一大批疾病,由于人类细胞中许多不同基因的无法控制的作用,主要出现了。 有可能导致癌症发展的基因融合,缺失,扩增,过表达和其他异常。 癌症发育中的一组罪魁祸首是蛋白激酶,蛋白激酶是催化蛋白质磷酸化的大型酶。 人类基因组包含500多个蛋白激酶基因。 激酶调节各种细胞功能,例如增殖,细胞周期,凋亡,分化等。 [1]。 激酶活性的放松管制会导致这些过程的惊人变化,对于癌细胞的存活和传播可能很重要[2]。 因此,许多激酶正在被研究为药物靶标,例如ABL [3] CDKS [4-6],ERBB2(HER2)[7],Aurks [8,9],MAPKS [10]等。 许多药物(即小分子抑制剂或单克隆抗体)已经获得了卫生与公共服务部联邦机构美国食品和药物管理局(FDA)的批准。 此类其他许多药物都在临床试验或临床前开发中。 在这篇评论中,我们将讨论FDA在2020年批准的药物。 avapritinib(Blu-285)(品牌名称Ayvakit)(图1 A)于2020年1月9日获得FDA批准,用于治疗无法切除或转移性胃肠道基质肿瘤(GIST)。 它用作对人PDGFRA受体激酶的抑制剂,该疾病中有D842V突变。癌症是一大批疾病,由于人类细胞中许多不同基因的无法控制的作用,主要出现了。有可能导致癌症发展的基因融合,缺失,扩增,过表达和其他异常。癌症发育中的一组罪魁祸首是蛋白激酶,蛋白激酶是催化蛋白质磷酸化的大型酶。人类基因组包含500多个蛋白激酶基因。激酶调节各种细胞功能,例如增殖,细胞周期,凋亡,分化等。[1]。激酶活性的放松管制会导致这些过程的惊人变化,对于癌细胞的存活和传播可能很重要[2]。因此,许多激酶正在被研究为药物靶标,例如ABL [3] CDKS [4-6],ERBB2(HER2)[7],Aurks [8,9],MAPKS [10]等。许多药物(即小分子抑制剂或单克隆抗体)已经获得了卫生与公共服务部联邦机构美国食品和药物管理局(FDA)的批准。此类其他许多药物都在临床试验或临床前开发中。在这篇评论中,我们将讨论FDA在2020年批准的药物。avapritinib(Blu-285)(品牌名称Ayvakit)(图1 A)于2020年1月9日获得FDA批准,用于治疗无法切除或转移性胃肠道基质肿瘤(GIST)。它用作对人PDGFRA受体激酶的抑制剂,该疾病中有D842V突变。该决定取决于Nav-Igator(NCT02508532)的结果,这是一项多中心,单臂,开放标签试验,招募了43例携带PDGFRA外显子18突变的患者,其中包括38例PDGFRA D842V突变患者[11]。selumetinib(AZD6244,Arry-142886)(品牌Koselugo)(图1 A)由FDA于2020年4月10日证明,用于治疗I型神经纤维瘤I型(NF1),这会导致沿着大脑的肿瘤的生长以及其他部分的肿瘤生长。它被用作对具有V600E突变的BRAF激酶的抑制剂。该决定取决于50名2-18岁儿童的临床试验(NCT01362803)的结果[12]。tucatinib(ONT-380,Arry-380)(品牌Tukysa)(图1 A)于2020年4月17日批准了FDA,用于治疗不可切除或转移性的HER2阳性乳腺癌。它被用作人ERBB2受体激酶的抑制剂。该决定是根据HER2CLIMB临床试验的结果(NCT02614794)做出的,这是一项关于Tucatinib与安慰剂的研究,并与Capecitabine和Trastuzumab结合使用,招募了612名患者[13]。pemigatinib(incb054828)(品牌pemazyre)(图1 A)于2020年4月17日批准了FDA,用于治疗高级/转移性或外科手术无法切除的胆管癌。它用作人FGFR2受体激酶的抑制剂。
这项研究中总共包括38例患者:27例非小细胞肺癌,10例结直肠癌和1例患有阑尾癌。在17例患者(占队列的45%)中检测到了对Adagrasib的抗性的假定机制,其中7例(共18%的队列)具有多种复合机制。获得的KRAS改变包括G12D/R/V/W,G13D,Q61H,R68S,H95D/Q/R,Y96C和KRAS G12C等位基因的高级扩增。获得的抗性旁路机制包括MET放大;在NRA,BRAF,MAP2K1和RET中激活突变;涉及ALK,RET,BRAF,RAF1和FGFR3的致癌融合; NF1和PTEN中的功能丧失突变。在九名肺腺癌患者中有两名可用,可提供成对的组织生物 - 生物膜样品,在没有任何其他耐药机制的情况下观察到组织学转化向鳞状细胞癌。使用体外深突变扫描屏幕,我们系统地定义了赋予KRAS G12C抑制剂抗性的KRAS突变的景观。
这一年还看到了9个正值高价值III期读数。在肿瘤学中,Imfinzi的进一步潜力在两项试验中显而易见:尼亚加拉证明,免疫疗法可以显着延长膀胱癌患者的生命,而在阿达西亚治疗中,这是在有限阶段的小细胞肺癌中首次也是唯一的免疫综合学表现出生存益处。回声和扩增试验证明了地幔细胞淋巴瘤和慢性淋巴细胞性白血病的易感性。也很高兴看到劳拉(Laura)的积极结果,劳拉(Laura)将塔格里索(Tagrisso)巩固为无法切除的EGFRM非小细胞肺癌的护理标准。命运 - 布雷斯特06证实了Enhertu有可能进化当前HR阳性乳腺癌治疗景观的潜力。在生物制药中,Waypoint试验表明,对于鼻息肉患者,Tezspire的潜力是重要的新治疗选择,而在罕见疾病中,Kosemelugo的Komet试验结果支持其在NF1 PN的成年人中的潜在扩展使用 - 一种毁灭性的稀有遗传疾病。
常规检验α-肌血症(TPSAB1和TPSB2)淀粉样变性(家族性,TTR)AS,Angelman综合征NaApeceped(AIRE)Beckwith-Wiedemann(BWS)恶性。黑色素瘤(CDKN2A)NaEGFR突变(T790M等)在CtDNA上(仅在Streck Bct或Paxgene DNA管中)FG(Keller Clanslome,Med12)NaHblrg,Gilbert综合征(UGT1A1)naHblrg,她差异。胃癌(CDH1)Na na hed,低蛋白外胚性发育不良(EDA)HFE-HH,HERED。
f i g u r e 1通过癌症类型的晚期癌症患者的比例,他们有资格获得与生物标志物相关的治疗或由生物标志物指导的临床试验。改编并从Normanno等人,2022年进行更新。9基于AACR Genie Real -World基因组数据集的内部分析,版本8版(AACR Project Genie Consortium,2017年10)。基于2015 - 2017年UK Cancer Research的癌症发病率。 由英国癌症研究和国家癌症研究所的监视,流行病学和最终结果(SEER)计划和其他来源的晚期疾病患者的比例。 基于FDA批准的批准治疗。 Clinical trial biomarkers (cancer types are excluded where drugs have already been approved): ERBB2 mutation and amplification (excluding breast, NSCLC, and stomach), KRAS G12C (excluding NSCLC), CCNE1 amplification, STK11 (NSCLC only), MET amplification, PALB2 (breast, pancreas, ovary), ARID1A, EGFR (excluding NSCLC), IHD1/2 (excluding biliary), PIK3CA (excluding breast), AKT1/2/3 (excluding breast), CDK12, ERBB3/4 amplification and mutation, FGFR1 fusion and mutation, ATM (excluding prostate), BAP1, CTNNB1, NF1/2和PTCH1。 AACR表示美国癌症研究协会;中枢神经系统,中枢神经系统;美国食品和药物管理局FDA; Genie,基因组学证据肿瘤信息交流; NSCLC,Nonsmall细胞肺癌; SCLC,小细胞肺癌。基于2015 - 2017年UK Cancer Research的癌症发病率。由英国癌症研究和国家癌症研究所的监视,流行病学和最终结果(SEER)计划和其他来源的晚期疾病患者的比例。基于FDA批准的批准治疗。Clinical trial biomarkers (cancer types are excluded where drugs have already been approved): ERBB2 mutation and amplification (excluding breast, NSCLC, and stomach), KRAS G12C (excluding NSCLC), CCNE1 amplification, STK11 (NSCLC only), MET amplification, PALB2 (breast, pancreas, ovary), ARID1A, EGFR (excluding NSCLC), IHD1/2 (excluding biliary), PIK3CA (excluding breast), AKT1/2/3 (excluding breast), CDK12, ERBB3/4 amplification and mutation, FGFR1 fusion and mutation, ATM (excluding prostate), BAP1, CTNNB1, NF1/2和PTCH1。AACR表示美国癌症研究协会;中枢神经系统,中枢神经系统;美国食品和药物管理局FDA; Genie,基因组学证据肿瘤信息交流; NSCLC,Nonsmall细胞肺癌; SCLC,小细胞肺癌。AACR表示美国癌症研究协会;中枢神经系统,中枢神经系统;美国食品和药物管理局FDA; Genie,基因组学证据肿瘤信息交流; NSCLC,Nonsmall细胞肺癌; SCLC,小细胞肺癌。
在近90%的少年脊髓细胞性白血病(JMML)的患者中,检测到五个规范RAS途径基因(NF1,NRAS,KRAS,PTPN11和CBL)的突变,这是早期童年的致命性恶性肿瘤。在本报告中,我们描述了七名被诊断为SH2B3突变的JMML的患者,其中包括5例被发现有启动,基因功能丧失突变的患者。SH2B3编码适配器蛋白LNK,这是RAS途径上游正常出血poiesis的负调节剂。这些突变被确定为种系,体细胞或两者的组合。在其他髓样恶性肿瘤中观察到的LNK功能的丧失,由于细胞因子超敏反应和JAK/STAT信号通路的激活而导致HE Matopoietic细胞的异常增殖。在诱导多能干细胞衍生的JMML样造血祖细胞中的体外研究也表明SH2B3-MU感染了造血祖细胞对JAK抑制作用的敏感性。 最后,我们描述了两名用JAK1/2抑制剂ruxolitinib治疗的JMML和SH2B3突变的患者。 本报告扩大了JMML中启动突变的频谱,并提高了针对SH2B3突变患者的JAK/STAT途径的可能性。在诱导多能干细胞衍生的JMML样造血祖细胞中的体外研究也表明SH2B3-MU感染了造血祖细胞对JAK抑制作用的敏感性。最后,我们描述了两名用JAK1/2抑制剂ruxolitinib治疗的JMML和SH2B3突变的患者。本报告扩大了JMML中启动突变的频谱,并提高了针对SH2B3突变患者的JAK/STAT途径的可能性。
