AK-antiVEGF 是一种基因治疗候选药物,处于临床前开发阶段,可用于治疗前庭神经鞘瘤 (VS) 患者。先前发布的全身性 VEGF 抑制剂治疗临床试验数据显示,由于 NF2 基因突变,部分 VS 患者 VS 肿瘤体积缩小,听力改善。然而,相关毒性可能会限制长期全身性使用 VEGF 抑制剂作为 VS 的可行治疗选择。在非人类灵长类动物 (NHP) 中,耳蜗内注射 AK-antiVEGF 后,抗 VEGF 蛋白的局部表达强劲且耐受性良好,这是一种用于评估给药参数的解剖学相关模型。两项评估多剂量的非临床研究的数据表明,全身性暴露于抗 VEGF 蛋白是有限的。计算模型支持已报道的生物活性抗 VEGF 蛋白水平扩散到早期 VS 肿瘤的典型位置的潜力。总之,这些数据支持未来临床开发 AK-antiVEGF 以用于潜在治疗 VS。
TEAD 转录因子已成为 Hippo 变异癌症(例如由 NF2 失活/缺陷引起的间皮瘤)的临床验证靶点。我们开发了一系列新型小分子靶向 TEAD 蛋白质降解剂,这些降解剂基于 TEAD 界面 3 的结合剂。在细胞中,这些化合物通过与 Cereblon 形成三元复合物来诱导 TEAD 降解,从而导致 TEAD 泛素化和随后的蛋白酶体降解。在基于细胞的荧光素酶报告基因测定中,降解剂显示出低纳摩尔活性。通过对真正的 YAP-TEAD 靶基因(例如 CTGF、Cyr61 和 AMOTL2)进行 qPCR 分析,进一步研究了 TEAD 降解的下游效应。通过使用各种间皮瘤细胞系进行细胞活力和增殖测定,将 TEAD 降解剂的有效性与其他类别的 TEAD 调节剂(如棕榈酰化和 YAP–TEAD 蛋白质相互作用抑制剂)进行了比较。最后,我们通过将一种选定的 TEAD 降解剂与约 2,800 种肿瘤药物库相结合,进行了无偏、定量的高通量药物组合筛选 1。
ABL1、ABL2、AKT1、ALK、APC、AR、ARAF、ARID1A、ARID1B、ATM、ATR、ATRX、BAP1、BARD1、BRAF、BRCA1、BRCA2、BRIP1、C11orf65、CCND1、CDH1、CDK12、CDK4、CDKN2A、CDX2、CHEK1、CHEK2、CSF1R、CTNNB1、DDR2、EGFR、ERBB2、ERBB3、ERBB4、ERCC2、ESR1、EZH2、FANCL、FBXW7、FGFR1、FGFR2、FGFR3、FGFR4、FLT3、FOXA1、FOXL2、GATA3、GNA11、GNAQ、GNAS、HNF1A、HRAS、IDH1、IDH2、INPP4B、 JAK1、JAK2、JAK3、KDM5C、KDM6A、KEAP1、KIT、KRAS、MAP2K1、MAP2K2、MAPK1、MET(外显子 14 跳跃)突变)、MLH1、MPL、MSH2、MSH6、MTOR、MUTYH、MYC、MYCN、MYD88、NF1、NF2、NOTCH1、NPM1、NRAS、NTRK1、NTRK3、PALB2、PBRM1、PDGFRA、PIK3CA、PMS2、POLD1、POLE、PPP2R2A、PTCH1、PTEN、PTPN11、RAD51B、RAD51C、RAD51D、RAD54L、RAF1、RB1、RET、RHEB、RHOA、RIT1、ROS1、SETD2、SF3B1、 SMAD4、SMARCB1、SMO、SPOP、SRC、STK11、TERT、TP53、TSC1、TSC2、VHL
胶质母细胞瘤(GBM)是中枢神经系统的高度血管生成恶性肿瘤,抗拒标准的抗血管生成疗法,部分原因是称为血管生成的替代过程称为血管生成。与GBM杂乱无章的联系,河马信号通路的失调导致YAP/ TEAD的过表达,以及涉及治疗耐药性的几个下游效应子。对GBM化学耐药表型中的血管生成模拟和河马途径是否相交知之甚少。本研究旨在研究临床注释的GBM样品中河马途径调节剂的表达模式,研究其在体外参与有关血管生成模拟的介入。此外,它旨在评估该途径的药理靶向的潜力。对河马信号构件YAP1,TEAD1,AXL,NF2,CTGF和CYR61转录水平在低度GBM和GBM肿瘤组织中的转录水平。通过人U87,U118,U138和U251脑癌细胞系以及临床注释的脑肿瘤cDNA阵列中的实时定量PCR分析基因表达。使用特定的小干扰RNA进行瞬时基因沉默。血管生成模仿,三维
世界卫生组织(WHO)的治疗2年级和3年级的脑膜瘤仍然困难和有争议。高级脑膜瘤的发病机理有望阐明以证明治疗策略。近年来已经阐明了脑膜瘤的分子生物学。高级脑膜瘤已与NF2突变和22Q缺失有关。CDKN2A/B纯合缺失和TERT启动子突变是WHO 3级男性的独立预后因素。除了22q损失,1p,14p和9q损失与高级脑膜瘤有关。富含拷贝数改变的脑膜瘤在生物学上可能具有侵入性。此外,已经根据这些分子生物学特征(包括DNA甲基化状态)提出了脑膜瘤的几种新的综合分类。新的分类可能对难治性侵袭性脑膜瘤的治疗策略具有影响,因为与常规分类相比,它们提供了更准确的预后。尽管几种全身性疗法(包括分子靶向疗法)可能有效治疗难治性侵袭性脑膜瘤,但这些药物正在测试中。脑膜瘤的全身药物治疗预计将来会开发。因此,本综述旨在讨论WHO 2和3脑膜瘤中观察到的独特的基因组改变,以及它们对高级脑膜瘤的诊断和治疗意义和全身药物疗法。
脑膜瘤是最常见的原发性颅内肿瘤,占原发性中枢神经系统肿瘤的三分之一以上。虽然传统上认为脑膜瘤是良性的,但脑膜瘤可能与相当大的发病率有关,并且特定的脑膜瘤亚群表现出更具侵袭性的行为和更高的复发率。复发的风险分层主要与世界卫生组织 (WHO) 的组织病理学等级和切除范围有关。然而,越来越多的文献强调了分子特征在评估复发风险中的价值。在保留先前分类系统的同时,2021 年 WHO 中枢神经系统肿瘤 (CNS5) 书籍第 5 版扩展了脑膜瘤的分子信息,以帮助指导管理。根据组织病理学标准和分子特征,WHO CNS5 将脑膜瘤分为三个等级 (1-3)。pTERT 突变和 CDKN2A/B 缺失现在表示 3 级脑膜瘤复发风险增加。肿瘤位置也与潜在突变相关。凸面脑膜瘤和大多数脊柱脑膜瘤携带 22q 缺失和/或 NF2 突变,而颅底脑膜瘤携带 AKT1、TRAF7、SMO 和/或 PIK3CA 突变。MRI 是诊断和制定脑膜瘤治疗计划的主要成像方式,而 DOTATATE-PET 成像可提供除解剖成像之外的补充信息。在此,我们回顾了脑膜瘤不断发展的分子图景,强调了成像/遗传生物标志物以及与神经放射科医生相关的治疗策略。
世界卫生组织 (WHO) 2 级和 3 级脑膜瘤的治疗依然困难且存在争议。人们期待阐明高级别脑膜瘤的发病机制以改善治疗策略。近年来,脑膜瘤的分子生物学逐渐明确,高级别脑膜瘤与 NF2 突变和 22q 缺失有关。CDKN2A/B 纯合缺失和 TERT 启动子突变是 WHO 3 级脑膜瘤的独立预后因素。除了 22q 缺失之外,1p、14p 和 9q 缺失也与高级别脑膜瘤有关。富含拷贝数变异的脑膜瘤可能具有生物学侵袭性。此外,基于这些分子生物学特征,包括 DNA 甲基化状态,已经提出了几种新的脑膜瘤综合分类。新分类可能对难治性侵袭性脑膜瘤的治疗策略产生影响,因为与传统的 WHO 分类相比,它们提供了更准确的预后。尽管包括分子靶向疗法在内的几种全身疗法可能对治疗难治性侵袭性脑膜瘤有效,但这些药物正在接受测试。预计未来将开发脑膜瘤的全身药物治疗。因此,本综述旨在讨论在 WHO 2 级和 3 级脑膜瘤中观察到的明显基因组改变,以及它们的诊断和治疗意义以及高级别脑膜瘤的全身药物疗法。
Oncomine Comprehensive Assay v3 DNA 组:AKT1、AKT2、AKT3、ALK、AR、ARAF、ARID1A、ATM、ATR、ATRX、AXL、BAP1、BRAF、BRCA1、BRCA2、BTK、CBL、CCND1、CCND2、CCND3、CCNE1、CDK12、CDK2、CDK4、CDK6、CDKN1B、CDKN2A、CDKN2B、CHEK1、CHEK2、CREBBP、CSF1R、CTNNB1、DDR2、EGFR、ERBB2、ERBB3、ERBB4、ERCC2、ESR1、EZH2、FANCA、FANCD2、FANCI、FBXW7、FGF19、FGF3、FGFR1、FGFR2、FGFR3、FGFR4、FLT3、 FOXL2、GATA2、GNA11、GNAQ、GNAS、H3-3A、HIST1H1E、HNF1A、HRAS、IDH1、IDH2、IGF1R、JAK1、JAK2、JAK3、KDR、KIT、KNSTRN、KRAS、MAGOH、MAP2K1、MAP2K2、MAP2K4、MAPK1、MAX、MDM2、 MDM4、MED12、MET、MLH1、MRE11A、MSH2、MSH6、MTOR、MYC、MYCL、MYCN、MYD88、NBN、NF1、NF2、NFE2L2、NOTCH1、NOTCH2、NOTCH3、NRAS、NTRK1、NTRK2、NTRK3、PALB2、PDGFRA、PDGFRB、PIK3CA、 PIK3CB, PIK3R1、PMS2、POLE、PPARG、PPP2R1A、PTCH1、PTEN、PTPN11、RAC1、RAD50、RAD51、RAD51B、RAD51C、RAD51D、RAF1、RB1、RET、RHEB、RHOA、RICTOR、RNF43、ROS1、SETD2、SF3B1、SLX4、SMAD4、SMARCA4、SMARCB1、SMO、SPOP、SRC、STAT3、STK11、TERT、TOP1、TP53、TSC1、TSC2、U2AF1、XPO1
摘要:复发性或高级别脑膜瘤是一种尚未得到满足的医疗需求。最近,我们证明依维莫司靶向 mTOR 在体外和人体中都是相关的。然而,依维莫司诱导 AKT 活化,这可能会影响该药物的抗增殖作用。此外,MAP 激酶通路已被证明与脑膜瘤肿瘤发生有关。因此,我们通过结合使用 Pi3k 抑制剂 alpelisib 和 MEK 抑制剂 trametinib 来靶向 Pi3k‐AKT‐mTOR 和 MAP 激酶通路。我们的研究是在人脑膜瘤细胞系和大量原代培养物上进行的,这些原代培养物来自 63 个新手术的脑膜瘤,包括 35 个 WHO 1 级、23 个 2 级和 5 个 3 级,其中一半表现出 NF2 基因组改变。在所有细胞系和 32 个随机选择的肿瘤中,无论基因组状态、组织学亚型或等级如何,Alpelisib 对细胞活力和增殖的抑制作用均高于依维莫司。曲美替尼还强烈抑制细胞增殖并诱导 AKT 活化。Alpelisib 和曲美替尼联合治疗可逆转曲美替尼诱导的 AKT 活化,并诱导附加抑制作用,无论细胞系或肿瘤特征如何。共同靶向途径似乎很有前景,可能特别适用于侵袭性脑膜瘤。
脑膜瘤是最常见的颅内肿瘤。有时,脑膜瘤可能会发展出恶性转化(MT)。在这篇评论中,我们回顾了脑膜瘤MT的发病率。2级脑膜瘤MT的发生率可能高于良性脑膜瘤。大约1%至4%的WHO 1级脑膜瘤可能会经历MT,而2级脑膜瘤的26%至33%的经历MT。到2级脑膜瘤的MT似乎比1级脑膜瘤的MT短。I级脑膜瘤进行MT的时间约为5年,而II级脑膜瘤通常在大约3年内经历MT。几个危险因素可能与MT有关,包括非库尔基碱位置,高丝分裂指数,较大的原发性肿瘤大小,更短的复发时间间隔和男性。MT的潜在分子机制包括染色体异常(染色体22Q缺失,NF2基因突变,染色体1p染色体的丧失),基因组改变(FOXM1,CDKN2A/B和TERTP)和脑膜瘤癌症干细胞。二次脑膜瘤可能比原发性脑膜瘤较差。此外,放疗在脑膜瘤MT中的作用尚不清楚。主要关注的是放射疗法是否可以诱导脑膜瘤的MT,以及放射疗法是否可以通过长期控制脑膜瘤来延长MT的延长时间。本评论总结了脑膜瘤的MT,并可能为进一步研究脑膜瘤提供了方向。
