在标题页上,从左上角开始顺时针方向:1. 2021 年 5 月 18 日,在一次多国演习中,两架美国空军 F-35A Lightning II 飞机和两架法国阵风飞机在法国上空飞行时打破队形。来源:空军中士亚历山大·库克。2. 这张 2022 年 7 月 12 日曝光的图像由美国宇航局的詹姆斯·韦伯太空望远镜在红外光下拍摄,显示了船底座星云中附近年轻的恒星形成区域 NGC 3324,揭示了之前被遮蔽的恒星诞生区域。来源:NASA、ESA、CSA 和 STScI。3. 一架 UAS 飞入 Pebble Hill 位置 Block B/Unit C2 的烟柱中,Tall Timbers 研究站。来源:USGS/Todd Hoefen。 4. 2022 年 1 月 31 日,猎鹰 9 号火箭从佛罗里达州卡纳维拉尔角太空军基地发射。图片来源:太空军 Joshua Conti。5. GOES-17 卫星捕捉到了这幅由 Hunga Tonga-Hunga Ha'apai 火山水下喷发产生的巨大云层的图像,拍摄于 2022 年 1 月 15 日。图片来源:NASA 地球观测站,图片由 Joshua Stevens 使用 NOAA 和 NESDIS 提供的 GOES 图像拍摄。6. 这张照片由火星 2020 号航天器下降级上的相机拍摄,显示了 NASA 的毅力号火星车在 2021 年 2 月 18 日着陆火星之前的样子。图片来源:NASA/JPL-Caltech。
在标题页上,从左上角开始顺时针方向:1.2021 年 5 月 18 日,在一次多国演习中,两架美国空军 F-35A Lightning II 飞机和两架法国阵风飞机在法国上空飞行时打破队形。图片来源:空军中士。亚历山大·库克。2.这张 2022 年 7 月 12 日曝光的图像由美国宇航局的詹姆斯·韦伯太空望远镜在红外光下拍摄,显示了船底座星云中附近年轻的恒星形成区域 NGC 3324,揭示了之前被遮蔽的恒星诞生区域。图片来源:NASA、ESA、CSA 和 STScI。3.一架 UAS 飞入 Pebble Hill 地点 Block B/Unit C2 的烟雾柱中,Tall Timbers 研究站。图片来源:USGS/Todd Hoefen。4.2022 年 1 月 31 日,猎鹰 9 号火箭从佛罗里达州卡纳维拉尔角太空军基地发射。 图片来源:Joshua Conti,太空部队。5.GOES-17 卫星捕捉到了这张由 Hunga Tonga-Hunga Ha'apai 火山于 2022 年 1 月 15 日水下喷发产生的巨大云层图像。 图片来源:NASA 地球观测站,Joshua Stevens 使用 NOAA 和 NESDIS 提供的 GOES 图像拍摄。6.这张照片由火星 2020 号航天器下降级上的摄像机拍摄,显示了美国宇航局的毅力号火星车于 2021 年 2 月 18 日着陆火星之前的样子。图片来源:NASA/JPL-Caltech。
AJ&K Azad Jammu and Kashmir AMR Antimicrobial Resistance BSL Biological Safety Level CDC Centers for Disease Control and Prevention COVID-19 Coronavirus disease 2019 DRAP Drug Regulatory Authority of Pakistan EOC Emergency Operations Center EQA External Quality Assessment GAP Gap Analysis Program GB Gilgit Baltistan GISAID Global Initiative on Sharing Avian Influenza Data GLASS Global Antimicrobial Resistance and Surveillance System HEC Higher Education Commission HIV Human Immunodeficiency Virus HR Human Resource ICT Islamabad Capital Territory IDIMS Idaho National Engineering and Environmental Laboratory Data Integration Mediation System IDSR Integrated Disease Surveillance and Response IPC Infection Prevention and Control IT Information Technology LIMS Laboratory Information Management System MB Molecular Biologist MeaNS Measles Nucleotide Surveillance RubeNS Rubella Nucleotide监视谅解局部纳入国家行动计划NCBI国家生物技术中心NCOC国家指挥与操作中心NGC国家基因组中心NGS下一代测序M/O NHSR&C国家卫生服务部法规和协调NIBSC国家生物标准和控制NIH国家卫生机构POER SURPARACTY PLECH POER SUPERACTION NIB SUPERACTION NIBSC的NIB SCISTAN POSH POER SUPERATION NIBSR SUPERACTION NIBSR SUPERACTION PLECH POSE省级公共卫生参考实验室SARS-COV-2严重急性呼吸综合症冠状病毒2 SOP标准操作程序SWOT优势,劣势,机遇和威胁TB结核病UKHSA UKHSA UKHSA英国卫生安全机构谁世界卫生组织
摘要:热能储能系统的整合可以改善发电厂和工业过程中众多应用的效率和灵活性。通过将这些技术转移到运输部门,现有电位可用于热管理概念,并可以开发新的热量。为此,作为DLR Next Generation Car(NGC)项目的一部分,针对电池电动车辆的固体媒体高温热储能系统的技术开发正在进行。此类概念的想法是在定义的温度水平上通过旁路概念将其储存并通过旁路概念排放。使用此类溶液时的决定性标准是高度的全身存储密度,可以通过在高温水平上存储热量来实现。但是,需要在储存高温热时,需要用于热绝缘的尺寸,从而导致可实现的全身存储密度的限制。为了克服这种局限性,提出了替代的热绝缘概念。到目前为止,常规的热绝缘措施是基于有效的热绝缘材料的储藏膜,因此,厚度是由于安全限制而导致的,该安全性限制了允许的最大表面温度。相比之下,替代概念可以通过将外部搭桥整合到充电期内的系统绝缘材料中的全身优势来实现。在放电期间,可以将预热材料内未使用的热量或热量损失整合到旁路路径中,并且可以通过主动冷却在装载过程中降低绝缘厚度。使用详细的模型进行参考和替代热绝缘概念,对相关侵蚀变量和根据定义的规格进行了系统模拟研究。结果证明,与先前的解决方案相比,替代热绝缘概念可以取得显着改善,并具有明显的改善,并且可以克服现有局限性。
约克郡和亨伯地区包含英国一些最大的CO 2发射器。英国北海(SNS)包含许多气田和盐水含水层,可以为某些CO 2提供存储。国家电网碳(NGC)计划通过共享的24英寸管道将这些来源和下沉的枢纽和插管连接,称为“亨伯集群项目”。使用多客户地震调查和释放井数据的数据库进行了数年的高水平研究之后,选择了约25 km的长度和8 km宽度,并选择了275 m厚的Bunter砂岩形成(Saline Aquifer),以详细分析。在1970年和1990年钻了一个称为5/42的结构中的两个Crestal井,寻找碳氢化合物,但仅发现盐水。在两个井中都获取了基本的形成评估日志。有限的核心和压力数据是在1990年的井中获取的。没有任何水分分析的记录,核心和日志覆盖范围有限。截至2012年中期,关于CO 2处置的5/42的适用性仍然存在一些不确定性。对盖岩石的强度和渗透性知之甚少,盖岩石的强度和渗透性由10-12 m的页岩覆盖在大约80 m的Halites和泥石上。尽管该结构似乎明确,并且在邦特砂岩中没有看到重大断层,但几乎没有储层渗透率数据,尤其是垂直渗透性。此外,在5/42中没有进行流动测试,生产或注入。©2013作者。由Elsevier Ltd.在GHGT的责任下选择和同行评审。为了解决这些问题,该公司于2012年11月申请了英国政府的第一届碳存储许可证,该公司在2013年夏季允许在欧洲委员会(通过其EEPR计划)和英国能源技术学院(ETI)慷慨的财政支持,于2013年夏季钻探评估井42/25d-3。
《减弱音爆:异形音爆演示器和安静超音速飞行的探索》是对 2009 年初我有幸撰写的案例研究“减弱音爆:NASA 50 年的研究”的后续。这项相对较短的调查发表在《NASA 对航空学的贡献》第一卷(NASA SP-2010-570)中。尽管我之前熟悉航空史,但最初,我还是犹豫不决,是否要接触这个似乎如此深奥且技术性极强的话题。值得庆幸的是,一些有关过去超音速计划的信息性参考资料已经可以帮助我入门,最著名的是埃里克·M·康威的《高速梦想:NASA 和超音速运输的技术政治,1945-1999》,这本书在“减弱音爆”和随后的前四章中被频繁引用。中断两年之后,我在 2011 年 3 月恢复了音爆研究,并撰写了这本新书。我非常感谢著名航空历史学家理查德·P·哈利恩博士给我的机会,让他就这个迷人的主题进行写作。哈利恩博士是《美国国家航空航天局对航空的贡献》和新美国国家航空航天局 (NASA) 丛书的编辑,本书是该丛书的一部分。在扩充、更新并希望改进我之前的叙述的同时,本书的主要焦点是诺斯罗普·格鲁曼公司 (NGC) 以及一个由政府和行业合作伙伴组成的多元化团队所取得的突破,他们证明了飞机可以设计成显著降低音爆强度。我在 2008 年 12 月和 2011 年 4 月访问加利福尼亚州爱德华兹的德莱顿飞行研究中心 (DFRC) 期间得到了帮助,并通过电话和电子邮件与 DFRC 人员进行了交流,这对我的一手资料研究大有裨益。图书管理员 Karl A. Bender 博士向我介绍了 NASA 一流的科学和技术信息资源,并在 Freddy Lockarno 的帮助下,帮助我收集了大量重要文件。航空历史学家 Peter W. Merlin 在 Dryden 的档案馆藏中为我找到了其他资料来源。Dryden 的主要音爆研究者 Edward A. Haering 提供了宝贵的原始资料,回答了问题,并审阅了涉及他项目的章节。同事工程师 Timothy R. Moes 和试飞员 James W. Smolka 和 Dana D. Purifoy 帮助我提供了额外的
3P Solutions Inc. BUNDLAR, LLC DOMA Technologies LLC Intuitive Research and Technology NGC ServiceNow A. Harold and Associates, LLC CAE USA Doron Precision Systems, Inc JANUS Research Group Norseman Defense Technologies SIMETRI Abacus Solution Group Cape Henry associates Dynepic, Inc. JHNA NSIN Sonatype Accenture Federal Services CDWG Eduworks Corporation JRM Technologies NVIDIA SOS International LLC Acumentrics, Inc. Cisco Systems Inc Engineering Support Personnel, Inc. Juniper Networks Oceus Specialty Systems Inc Ad hoc Research Clarity Cyber Envision Innovative Solutions, Inc. KBR ODU/VMAS Strategic Operational Solutions, Inc. STOPSO Aechelon Technology CloudBees Ephibian Keysight Technologies Odyssey Systems Consulting Group, Ltd. Super Systems, Inc. Aero Simulation, Inc. Cole Engineering Services, Inc Epic Games Krush Acquistions/Ensley. Inc Okta System Innovation Group, LLC AITC, Inc. Collins Aerospace FlightSafety International Kyrus Tech Omni Federal Technical Systems Integration Inc. Akima Colossal FN America Leidos Ops Tech Alliance TEK Systems Alan Anderson Aerospace Consulting LLC COLSA Corporation Frontier Technology Lockheed Martin Outcome One Textron Algoptimal Computer World Services CWS GaN Corporation Lockheed Martin RMS Par Government The Coe Group Alluvionic Inc. Constant Technologies GDIT Loyal Source Government Services Parsons TReX NSTXL Amazon CRANK Marketing Group LLC General Atomics LSI PCI Technology V3 Strategies and Solutions, LLC American Systems Cubic General Dynamics Mission Systems MAG Aerospace PeopleTec Valiant Applied Research Associates cubic CMPS Google Makai LLC Pinnacle Solutions Inc Valkyrie Enterprises AT&T Darley Defense Grid Raster Inc. Malama Kai Technologies LLC Plateau GRP Varjo AT&T Public Sector Data Machines Corp. Hewlett Packard Enterprise Marathon Targets Inc Program Manager Training Systems PMM 130 Vertex 技术和培训解决方案 ATS Davis Strategic Innovations, Inc. DSI HII - Mission Technologies Maxon Inc. Radiance Technologies VMASC/ODU Battelle DCI Solutions Hodges Transportation - NATC MFGS Inc. Ravenswood Solutions Vmware BeyondTrust Dell Federal IBM Microsoft Real-Time Innovations RTI Worldwide Technology Bohemia Interactive Simulations Dell Technologies, Inc. Improbable Millennium Corporation Red River Xator Corporation Booz Allen Hamiilton Dignitas Technologies Infinitas engineering Inc. Miracle Systems RSGS LLC Yorktown Systems Group Boston Consulting Group DirectViz Solutions Info-Matrix Corporation MITRE R-Squared Solutions Zachary Piper Solutions Boston Engineering Discovery Machine, Inc iNovate Solutions, Inc. MSBAI S2 Analytical Solutions BSC Technology LLC DiSTI InterImage, Inc. NEXGEN FEDERAL SYSTEMS SAIC
前言 我非常高兴地介绍印度国家空间研究委员会 (INCOSPAR)、印度国家科学院 (INSA) 和印度空间研究组织 (ISRO) 为 2024 年 7 月 13 日至 21 日在韩国釜山举行的第 45 届 COSPAR 科学大会准备的《印度空间研究报告》。该报告概述了 2022 年 1 月至 2023 年 12 月期间印度在近地空间、太阳、行星科学和天体物理学几个领域取得的重要成就、成果和研究活动。本报告还介绍了空间科学研究能力建设活动、空间科学和技术学术课程、空间科学和技术方面的国家和国际合作、在各个研究所和中心建立的为印度空间科学探索和研究做出贡献的实验室和设施,等等。印度空间科学界一直活跃于天文学和天体物理学、太阳物理学、空间天气和日地关系、空间和大气科学、行星科学、地磁学和地球科学等领域。本报告介绍了海洋学、大气结构和动力学、云和对流系统、气溶胶、辐射和微量气体、天气和气候变化、中层大气、电离层、磁层、太阳风和空间天气、月球和行星研究、太阳和太阳系天体、恒星、星系、银河系和河外天文学和宇宙学等领域的研究重点。在行星科学领域,2023 年 8 月 23 日,月船三号在月球南部高纬度 Shiv-Shakti 点软着陆,使印度成为第四个掌握月球软着陆技术的国家,但却是第一个在南极地区实现软着陆的国家。月船三号收集了着陆点附近元素组成、热物理性质、等离子体环境和地震活动等一个农历日的数据。成功演示了从月球表面跳跃、从月球轨道脱离到地球轨道,这将为未来的样品返回铺平道路。月船二号轨道器已运行五年,为月球科学提供了新的见解。AstroSat 是印度首个多波长太空天文观测站,已于 2023 年 9 月 28 日成功完成八年运行。该观测站自 2016 年 10 月起以提案方式运行,并向天文学界开放。目前,AstroSat 拥有来自 50 个国家的约 2700 名用户。在最初的八年中,AstroSat 观测已产生了 440 多份同行评审出版物,以及 1500 多份会议论文集、GCN 通告、天文学家电报和其他非同行评审出版物。在此期间,AstroSat 数据得出的一些主要科学成果包括利用 UVIT 发现遥远矮星系中的扩展发射,2018 年爆发衰退阶段,变貌活跃星系 NGC 1566 的光谱跃迁,以及对 OJ 287 火焰星光谱状态的多波长观测。Aditya-L1 于 2023 年 9 月 2 日发射,是印度首次从日地系统拉格朗日点 1 (L1) 研究太阳的太空任务。该任务搭载七个有效载荷来观察光球层、色球层和日冕,为观察太阳活动及其对空间天气的影响提供了更大的优势。Aditya-L1 在 2024 年 5 月捕获了太阳事件(耀斑和日冕抛射)。印度的 X 射线偏振测量任务 XPoSat 于 2024 年 1 月 1 日发射,已开始进行科学观测,其中包括由 XPoSat 上的 X 射线偏振仪 POLIX 生成蟹状脉冲星的脉冲轮廓。我感谢为编写本报告而为其各自研究所和部门开展的空间研究活动提供意见的科学家。我感谢印度空间研究组织总部班加罗尔科学计划办公室代表 INCOSPAR 编撰和编辑本报告的辛勤工作。