诱导的所需基因表达一直是揭示基因功能和调节合成生物学和治疗应用的细胞活性的重要策略。Apart from ectopically expressing additional copies of a gene by introducing their open reading frames (ORFs), methods to arti fi cially activate endogenous copies of genes have been explored, including transcription activating factors tethered to zinc fi nger proteins ( Beerli et al., 2000 ) and transcription activator-like effectors (TALE) ( Miller et al., 2011 ; Zhang et al., 2011 ; Maeder等人,2013b; Perez-Pinera等,2013b)。Originally discovered as a virus-resistance mechanism from bacteria ( Barrangou et al., 2007 ), the CRISPR-Cas system has provided ef fi cient, precise, and scalable ways to modulate expression of genes, and has been successfully adopted for targeted gene activation ( Mali et al., 2013 ; Perez-Pinera et al., 2013a ; Maeder et al., 2013a ; Cheng et al., 2013年,Tanenbaum等人,2014年;为了使用CRISPR-CAS9实现基因激活,创建了催化失活的Cas9(DCAS9),以与特定的基因组区域结合而没有能力创建双链突破(Jinek et al。,2012; Gasiunas et al。,2012; Qi et al。,2013; Qi et al。,2013; Konermann et; Konermann et al an al an eal; konermann et al。,2013; a e e,2013; i。赋予DCAS9具有诱导基因表达的能力,已经探索了不同的转录激活域的基因激活强度(图1A)。第一代CRISPRA的灵感来自锌纤维和基于故事的方法,并使用了包括VP64或P65在内的单个激活域。vp64由VP16的四个副本组成,该副本是源自单纯疱疹病毒的转录激活因子。p65是NF-κB复合物的一部分,负责免疫信号传导中的转录激活。第二代CRISPRA系统制定了不同的策略来招募不同的激活剂的多个副本,包括用于招募10或24份VP64副本的Suntag阵列到给定的基因座,VP64,P65和RTA(VPR)的串联融合到DCAS9,以及
新基因组技术(NGT)及其产生的植物品种(NGT 植物品种)对育种者、农民和消费者具有很高的潜在附加值。它们可以在气候变化时期减少农药、化肥和水的使用,从而保证产量。 NGT 可能意味着育种者的时代变迁。更快的产品开发时间和更短的创新周期最初带来优势。然而,NGT 植根于复杂的法律环境中,特别是与知识产权(专利和植物品种保护)以及市场授权法相互影响。因此,随着NGT的使用增加和NGT植物品种比例的上升,必须考虑知识产权(特别是专利)和批准法的影响。
摘要 - 具有光学动力和数据遥测的基于最小的和无线近红外(NIR)的神经记录器是一种有希望的长期监测的有前途的方法,该方法具有最小的现状独立唱片仪之间的最小物理维度。但是,基于NIR的神经记录综合电路(IC)的主要挑战是在存在光引起的寄生寄生短路电流的情况下保持强大的操作。当信号电流保持较小以降低功耗时,尤其如此。在这项工作中,我们为电动机预测提供了一个容忍和低功率的神经记录IC,该记录可以在低调的300 µw/mm 2中充分发挥作用。,它以4.1噪声效率因子(NEF)伪抗抑制作用的放大器,芯片神经特征提取器和单个的Mote-Mote级增益控制,在38℃时达到了0.57 µW的最佳能力消耗。应用猴子的20通道预录的神经信号,IC可以预测用
最近的文献表明,触觉事件在初级体感皮层 (S1) 中的表现超出了其长期确定的拓扑结构;此外,S1 受视觉调节的程度仍不清楚。为了更好地描述 S1,在触摸前臂或手指时记录了人类电生理数据。条件包括视觉观察到的物理触摸、没有视觉的物理触摸和没有物理接触的视觉触摸。从这个数据集中得出两个主要发现。首先,视觉强烈调节 S1 区域 1,但前提是触摸有物理元素,这表明被动触摸观察不足以引起神经反应。其次,尽管在假定的 S1 手臂区域记录,但神经活动在物理触摸期间代表手臂和手指刺激。手臂触摸的编码更强烈和具体,支持 S1 主要通过其拓扑组织编码触觉事件的想法,但也更普遍地涵盖身体的其他区域。
摘要 基于锌指蛋白、转录激活因子样效应子和 CRISPR 的基因组和表观基因组编辑和成像方法为研究基因组功能提供了强有力的工具。靶向序列设计对于这些实验的成功至关重要。尽管现有的设计软件主要侧重于设计特定元素的靶序列,但我们在此报告了 Jackie 和 Albert 的综合 K 聚体实例枚举器 (JACKIE) 的实现,这是一套用于枚举基因组中所有单拷贝和多拷贝位点的软件,这些位点可以合并用于基因组规模的设计,也可以与其他轨道一起加载到基因组浏览器中,以方便基于 Web 的图形用户界面设计。我们还实现了快速算法来识别靶向序列的序列邻域或脱靶计数,以便可以在合理的时间内在数百万个设计序列中识别出脱靶概率低的设计。我们展示了 JACKIE 设计的 CRISPR 位点簇在基因组成像中的应用。
摘要 — 微型化和无线近红外 (NIR) 神经记录器具有光学供电和数据遥测功能,已被引入作为一种有前途的安全长期监测方法,其物理尺寸在最先进的独立记录器中最小。然而,基于 NIR 的神经记录集成电路 (IC) 面临的主要挑战是在结二极管光感应寄生短路电流存在的情况下保持稳健运行。当信号电流保持较小以降低功耗时尤其如此。在这项工作中,我们提出了一种用于运动预测的耐光低功耗神经记录 IC,它可以在高达 300 µ W/mm 2 的光照下完全发挥作用。它实现了 38 ◦ C 时 0.57 µ W 的最佳功耗,具有 4.1 噪声效率因数 (NEF) 伪无电阻放大器、片上神经特征提取器和单独的微尘级增益控制。通过应用猴子的 20 通道预录神经信号,该 IC 可以预测手指的位置和速度,
摘要:基因组编辑领域始于酵母中巨核酸酶(如LAGLIDADG家族归巢核酸内切酶)的发现。继转录激活因子样效应核酸酶和锌指核酸酶发现之后,最近发现的成簇的规律间隔的短回文重复序列(CRISPR)/CRISPR相关蛋白(Cas)系统为基因编辑领域的应用打开了新的窗口。本文,我们回顾了不同的Cas蛋白及其相应的特点包括优缺点,并概述了不同的核酸内切酶缺陷型Cas蛋白(dCas)衍生物。这些dCas衍生物由核酸内切酶缺陷型Cas9组成,其可与不同的效应结构域融合以执行不同的体外应用,如追踪、转录激活和抑制以及碱基编辑。最后,我们回顾了这些 dCas 衍生物在体内的应用,并讨论了它们在体内进行基因激活和抑制的潜力,以及它们未来在人类治疗中的潜在用途。
摘要 — 微型化和无线近红外 (NIR) 神经记录器具有光学供电和数据遥测功能,已被引入作为一种有前途的安全长期监测方法,其物理尺寸在最先进的独立记录器中最小。然而,基于 NIR 的神经记录集成电路 (IC) 面临的主要挑战是在结二极管光感应寄生短路电流存在的情况下保持稳健运行。当信号电流保持较小以降低功耗时尤其如此。在这项工作中,我们提出了一种用于运动预测的耐光低功耗神经记录 IC,它可以在高达 300 µ W/mm 2 的光照下完全发挥作用。它实现了 38 ◦ C 时 0.57 µ W 的最佳功耗,具有 4.1 噪声效率因数 (NEF) 伪无电阻放大器、片上神经特征提取器和单独的微尘级增益控制。通过应用猴子的 20 通道预录神经信号,该 IC 可以预测手指的位置和速度,
CRISPR 技术简介:CRISPR、碱基编辑、主要编辑 基因编辑的目的是精确高效地将活细胞中的 DNA 序列转换成新的所需序列。可以使用多种内切酶切割 DNA,早期(并取得成功的)改造人类基因组的尝试使用了工程内切酶,例如转录激活因子样效应核酸酶 (TALEN) [ 7 ]、锌指核酸酶 (ZNF) [ 8 ],以及最近的成簇规律间隔短回文重复序列 (CRISPR) 与 CRISPR 相关蛋白 (Cas) 的结合。易于使用、成本效益高、能够进行多重基因组编辑,再加上 CRISPR/Cas 基因组编辑工具包的快速发展,引发了一场以 CRISPR/Cas 为中心的基因编辑革命,有望大大提高 T 细胞免疫疗法的疗效。CRISPR/Cas 核酸酶和衍生技术(如碱基编辑器和引物编辑器)极大地扩展了可能的基因组修饰范围,允许进行有针对性的基因插入、删除、碱基对转换或这些操作的组合 [ 9 ]。
使用血流动力学响应进行脑机接口的一个固有问题是生理过程的缓慢性。本文提出并验证了一种估算神经元激活引起的氧合血红蛋白变化的新方法。在使用功能性近红外光谱 (fNIRS) 监测血氧水平依赖性信号的时间响应时,需要仔细检查氧合血红蛋白和脱氧血红蛋白在其相空间中的早期轨迹。此外,为了缩短检测时间,实施了一种基于核递归最小二乘 (KRLS) 算法的预测方法。在验证所提出的方法时,检查了从左侧运动皮层测量的手指敲击任务的 fNIRS 信号。结果表明,使用高斯核的 KRLS 算法在 q = 15 步时(即在 9.19 Hz 的采样频率下提前 1.63 秒)对 1 HbO(即 87.5%)和 1 HbR(即 85.2%)均产生最佳拟合。由此得出结论,使用 fNIRS 预测可以在大约 0.1 秒内完成神经元激活,如果与 EEG 结合使用,则可以实现几乎实时的实践。
