虽然我们承认要求就这些专利的作用和影响提交一份报告在很大程度上是合理的,但在提出任何立法提案之前,必须等待收到该报告及其可能产生的任何提案。我们坚信,植物品种和专利保护制度和平共处符合欧盟的利益,有利于促进欧洲品种创新,促进作物改良。上一节提出的四项提案并没有质疑并存的两种制度,而是试图在短期和中期内解决所有利益相关者的合理担忧,并且可以成为委员会报告中建议的一部分,并迅速采取行动(三项不需要立法行为,一项可以在正在讨论的 PRM 法规中解决),以免延迟在三方会谈中就拟议法规达成妥协。理想情况下,最好同时通过 PRM 法规和 NGT 提案,以免延迟 NGT 品种的上市。如果《PRM 法规》的通过可能会被大大推迟,那么如果 CPVO 的内部规则允许,就应该立即研究其独立采纳第一项建议的可能性。
(2) NGT 是一组不同的基因组技术,每一种技术都可以以不同的方式使用,以实现不同的结果和产品。它们可以产生与传统育种方法获得的生物体相同的修饰,也可以产生具有更复杂修饰的生物体。在 NGT 中,定向诱变和同源遗传(包括同源遗传)引入遗传修饰,而无需插入不可杂交物种的遗传物质(转基因)。它们仅依赖于育种者的基因库,即常规育种可用的全部遗传信息,包括可以通过先进育种技术杂交的远亲植物物种。定向诱变技术可对生物体基因组中精确位置的 DNA 序列进行修饰。同源遗传技术可将育种者基因库中已经存在的遗传物质插入生物体的基因组中。同源遗传是顺源遗传的一个子集,其结果是在基因组中插入由育种者基因库中已经存在的两个或多个 DNA 序列组成的重新排列的遗传物质副本。
会议报告:创新与预防。农业新基因组技术 21.02. - 2024 年 2 月 22 日,图茨青福音学院 在欧盟议会环境委员会处理完基因组技术新法规几天后,来自科学、政治和其他利益集团的 45 多位专家于 2 月 21 日至 22 日来到图茨青福音学院参加“创新与预防”会议。农业新基因组技术。这是第三方资助项目“生物经济中的创新与供应”的最后一次会议,该项目由德国联邦教育与研究部、基督教社会伦理学系(Markus Vogt 教授、Jan Grossarth 教授、Nora Meyer、Sebastian Kistler 博士)和技术-神学-自然科学研究所(TTN、Stephan Schleissing 博士、Anselm 教授)资助。博士Stephan Schleissing介绍了本次会议的背景,即欧洲议会将于2024年2月7日批准欧盟委员会目前提出的关于新基因组植物育种技术(NGT)的妥协提案。折衷方案规定,新的基因组技术只要引入来自各自物种基因库的遗传物质(即所谓的NGT 1植物)就不再受《欧洲基因工程法》的管制,就像2001年欧盟《故意释放指令》所规定的一样。然而,所有其他使用新基因组技术(NGT 2 植物)生产的植物将继续受到严格监管,需获得授权和标签,并且基本上会接受与以前相同的风险评估。然而,欧洲议会原则上批准的折衷方案提出了以下变化:NGT 1植物应强制向最终消费者贴上标签,并且通常不应被授予专利。博士Frank Hartung:从科学角度看新育种技术 会议的第一场演讲从分子生物学角度探讨了植物育种中的新基因组技术这一主题。基本上,新旧育种技术的目的都是创造或改良农作物已知的所需性状,或创造具有更好特性的新植物变种。更好的特性包括在相同投入下获得更高的产量、对生物和非生物因素的适应力,以及为消费者提供的特性,例如更好的口感或更高的营养价值。新基因组技术(NGT)可以在计划的位置对基因组进行改变。利用这些基因组编辑技术,尤其是 CRISPR/Cas,与传统的诱变技术相比,改变的精度大大提高。此外,基因组中非计划位置的意外变化(所谓的脱靶效应)明显减少,并且可以更快、更经济高效地产生所需的突变。这就是它也被称为靶向诱变的原因。在这个过程中,在基因组的计划位置诱导双链断裂,然后通过细胞自身的修复机制以及添加更小或更复杂的基因序列进行重新组装,从而产生突变。迄今为止,研究和使用最频繁的基因组编辑植物是中国,其次是美国。教授、博士Detlef Bartsch:欧盟新基因组技术的监管选项:欧盟研究项目 GeneBEcon 的成果研究项目 GeneBEcon(捕捉基因编辑对可持续生物经济的潜力)是来自不同学科和大学的科学家以及实践合作伙伴的国际合作。该项目的目的首先是开发一个利用马铃薯和微藻进行基因编辑的工具箱,作为
图1。人类骨骼肌的蛋白质组和磷蛋白组是全身胰岛素敏感性的关键决定因素。研究设计示意图:我们招募了77个患有正常葡萄糖耐受性(NGT)(n = 43; 21雄性和22位女性)或2型糖尿病(T2D)(n = 34; 21雄性和13雌性和13个雌性)的个体,并收集了胰岛素前的30分钟。还招募了46个NGT(n = 12; 7名男性和5位女性)或T2D(n = 34; 21雄性和13个女性)的验证队列(a)。在夹具的稳态周期内的葡萄糖灌注速率的箱形图,其中水平线表示中位数(b)。排名的条图显示了所有个体的胰岛素灵敏度异质性(C)。可再现和高通量(Phospho)蛋白质组学在翠鸟机器人和Evoseop-timstofpro液相色谱量表质谱法设置上的蛋白质组学工作流程。样品以DIA-PASEF模式测量,并在Spectronaut软件(D)中进行量化。在至少5个样品中定量的蛋白质,磷酸蛋白,肽和位点的数量。丝氨酸,苏氨酸和酪氨酸残基上的位点磷酸化分布(E)。对蛋白质组(基线,禁食条件)和磷酸蛋白质组(基线和胰岛素)(F)的所有个体的变异系数计算的受试者间变异。蛋白质组(蓝色)和磷酸蛋白质组(基线=红色,胰岛素=紫色)与血糖临床指标的关联。Venn图描绘了M-Value与HOMA1-IR(G)之间关联的重叠。gir =葡萄糖输注率。T2D = 2型糖尿病。主成分分析M值对蛋白质组和磷酸蛋白质组有色。热图展示了Z尺寸的PC负载贡献跨性别,性别和夹具(H-I)。胰岛素灵敏度关联是基于Kendall与Benjamini-Hochberg校正的P值<0.05被认为是显着的。ngt =正常的葡萄糖耐受性。p <0.001 = ***。图1中显示的所有数据均来自发现队列。
印度经济已经是世界第六大经济体,也是世界上增长最快的国家之一,世界银行预测 2019 年印度经济同比增长率将达到 7.5%。由于国家绿色法庭 (NGT) 的积极行动,估计有 6 亿人面临高度甚至极端的用水压力和环境污染——这是一个日益政治化的问题——市场为整个水务行业的参与者提供了机会……
德国是欧盟(EU)中人口最多,最有权势的国家。在欧盟和全球范围内,它在农业政策中具有影响力。德国人通常对新技术开放,愿意创新,但耕种,尤其是农业生物技术占据了独特的政治空间。德国社会在农业生物技术方面存在冲突,这反映在混合政策和消息传递中。在近一代人中,德国环境和消费者活动家在德国和全球抗议农业中使用生物技术。生物技术测试地块既被用作研究工具,也是欧盟监管批准过程中必需的一部分,它经常被破坏者摧毁,以至于今天在德国不再尝试测试地块。公众对Ge Wocops的拒绝数十年来一直很普遍,但仍然占上风。目前,欧盟一级正在进行有关通过新基因组技术(NGT)设计的植物的潜在豁免的辩论,而没有目前的GE立法。可能是由于在欧盟级别上进行了关于NGT自由化的持续辩论,公开辩论已经开始从围绕整体接受的问题转变为可能实施自由化的问题。
自从我们的第三轮报告发布以来,我们对潜在气候变化影响的理解已随着现场特定的气候变化风险评估的压缩机和终端的特定气候变化评估。此外,我们还基于这些评估和最新的洪水风险评估,以在RIIO-GT3价格控制期内进行现场特定气候变化影响的气候弹性战略中提出。这些研究是为了加深我们对洪水和温度升高所带来的风险的理解,并有助于审查现有标准的适用性以及对气候变化的规格的适用性。在2025年,预计Defra和环境局的新国家风险信息将获得洪水和沿海侵蚀的信息。发布将为我们2016 NTS洪水风险评估的潜在审查提供信息。我们还将在河道上进行针对性的河流冲刷建模。与前一轮一样,本报告是与能源网络协会(ENA)和气体分销网络(GDNS)共同开发的。ngt已经完成了完全评分的风险评估,但由于与国家电网组分开,从第三轮报告中评估了从第三轮报告中评估的气候风险数量。我们已经审查了当今的风险评估和2050年的风险评估,并根据Defra要求一致,并为2100提供了置信度评级。ARP4风险评估已经确定了两个高风险和七个中等气候风险。与这些风险相关的气候变量与以前的NGT ARP报告一致:
新的基因组技术(NGT)也用于改善农作物的营养价值(质量特征)。目标是增加维生素,重要营养素和微量营养素的含量。的例子是米饭,具有更多的铁,大豆,具有更高比例的健康油酸,以及瓜,大米和香蕉,含量更高的维生素A。将来,这些植物也可以促进许多国家的重要营养素(“隐藏饥饿”)的猖support,从而改善了营养和保健性的健康和健康。,但也可以减少不良成分,例如小麦含量减少的麸质含量或土豆,其中较少的致癌丙烯酰胺会产生[7]。
鉴于这些结果以及 EFSA 的结论,即定向诱变和同源基因(不包括内源基因)本身不会产生不同于传统育种方法的特定危害,定向替换、插入和缺失(NGT 提案附件一中的标准 1 和 2)、定向插入和替换同源基因(标准 3)以及定向倒位(标准 4)被纳入等同性标准。标准 5 被纳入考虑可能的结果(DNA 序列),这些结果可能发生在育种者基因库 6 中的物种中,但可能未被先前的标准涵盖。该标准仅对标准 3 和基因改造不干扰内源基因的条件进行了豁免。