以这种方式,植物育种为保护生物多样性和减少温室气体排放做出了贡献,并将继续贡献,从而支持欧盟绿色交易目标和几个联合国可持续发展目标4,5。ngts可以补充现有的植物育种方法,以加快更好地适应气候变化影响的植物品种的发展,同时确保食品和营养安全,并提高可持续性。
2012 年,欧洲食品安全局就通过同源和基因内杂交培育的植物发表了意见。随着近十年新基因组技术 (NGT) 的发展,现在可以通过在基因组的精确位置插入所需序列来获得同源和基因内植物。欧洲委员会要求欧洲食品安全局就通过同源和基因内杂交培育的植物的安全性和风险评估提供最新的科学意见,以便 (i) 识别潜在风险,并将其与通过传统育种和成熟基因组技术 (EGT) 获得的植物所产生的风险进行比较;以及 (ii) 确定当前指南对同源和基因内植物风险评估的适用性。欧洲食品安全局先前意见的结论已得到审查,同时考虑到新指南和最新文献。转基因专家组得出结论,与通过传统育种和 EGT 获得的植物相比,通过 NGT 获得的顺式基因和基因内植物没有发现新的风险。自 2012 年 EFSA 意见发表以来,没有新的数据可以挑战该文件中提出的结论。EFSA 2012 年科学意见的结论仍然有效。EFSA 转基因专家组重申这些结论,就 DNA 来源和基因产品的安全性而言,通过顺式基因使用相关植物衍生基因所产生的危害与传统植物育种的危害相似,而基因内植物可能会产生额外的危害。此外,EFSA 转基因专家组认为,顺式基因转化和基因内转化采用与转基因相同的转化技术,因此,就宿主基因组的改变而言,通过随机插入获得的顺式基因转化、基因内转化和转基因植物不会引起不同的危害。与此相比,NGT 的使用降低了与宿主基因组潜在的意外改变相关的风险。因此,由于添加的遗传物质是定点整合的,因此对通过 NGT 获得的顺式基因转化和基因内转化植物的评估可能需要的要求更少。此外,转基因专家组得出结论,当前的指导方针部分适用且足够。根据具体情况,对通过 NGT 获得的顺式基因转化或基因内转化植物进行风险评估可能需要更少的数据。
2023年7月5日,欧洲委员会通过了一项提案2,针对使用某些新的基因组技术(NGT)获得的有关工厂的新法规,以及从中获得的食品和动物饲料,以及法规修订(EU)2017/625。ngts是新的生物技术技术,使生物体的靶向基因组变化成为可能。它们是在2001年引入欧洲转基因生物立法(指令2001/18/EC)之后开发的。最著名的NGT是CRISPR-CAS9。欧盟委员会得出的结论是,当前的转基因生物立法不再适合这些新的发展,不利于创新和有用的产品的发展。这就是为什么引入了当前提案以支持“从农民到董事会”和“生物多样性”的欧盟战略的原因。ngts具有固有的潜力,可以为更可持续的世界做出贡献,这是由于可以承受气候变化和害虫/疾病的农作物的更快繁殖。欧盟委员会的提议仅与包含同一植物的遗传物质(靶向诱变)或可犯罪植物的植物有关(体质,包括内部内发生)。转基因工厂不包括在此中,并且仍遵守当前的转基因生物立法。考虑了两类NGT植物:
在2018年,欧盟法院裁定,NGT的产品被归类为转基因生物(GMO),应根据严格的欧洲GMO立法对待。由于监管框架非常耗时和成本密集,因此只有少数大公司有资源可以从事NGT及其认可。此外,通过采用立法时,NGT尚未存在。新的欧洲委员会提案规定了将NGT工厂置于市场上的两种途径。ngt也可以自然或通过常规育种发生,并且符合该法规中规定的一组特定标准,将被视为常规工厂,并免除GMO立法要求。所有其他NGT工厂仍然需要满足现有的转基因生物立法的要求,这意味着它们受风险评估的约束,只有一旦获得监管授权,才可以投放市场。
植物育种是一项古老的活动,可以追溯到农业的一开始。在1800年代中期,格雷戈尔·门德尔(Gregor Mendel)使用豌豆植物概述了遗传原理,因此为科学植物育种提供了必要的框架。20世纪初期,遗传遗传法的进一步发展加剧了其在植物育种中的应用。在1970年代后期生物技术的进步允许传统的繁殖技术(用于杂交植物),通过使用能够引入遗传变化的新技术来发展。“已建立的基因组技术”一词是指2001年之前开发的那些技术。在过去20年中,基于生物技术的进步已经开发了各种新技术,并且现在广泛使用了“新基因组技术”(NGTS)一词。虽然已建立的基因组技术在基因组中产生随机序列改变,但NGT允许将变化定向到选定的基因组位置,从而可以更精确地编辑基因组。什么是新的基因组技术?
(2) NGT 是一组不同的基因组技术,每一种技术都可以以不同的方式使用,以实现不同的结果和产品。它们可以产生与传统育种方法获得的生物体相同的修饰,也可以产生具有更复杂修饰的生物体。在 NGT 中,定向诱变和同源遗传(包括同源遗传)引入遗传修饰,而无需插入不可杂交物种的遗传物质(转基因)。它们仅依赖于育种者的基因库,即常规育种可用的全部遗传信息,包括可以通过先进育种技术杂交的远亲植物物种。定向诱变技术可对生物体基因组中精确位置的 DNA 序列进行修饰。同源遗传技术可将育种者基因库中已经存在的遗传物质插入生物体的基因组中。同源遗传是顺源遗传的一个子集,其结果是在基因组中插入由育种者基因库中已经存在的两个或多个 DNA 序列组成的重新排列的遗传物质副本。
(2) NGT 是一组不同的基因组技术,每一种技术都可以以不同的方式使用,以实现不同的结果和产品。它们可以产生与传统育种方法获得的生物体相同的修饰,也可以产生具有更复杂修饰的生物体。在 NGT 中,定向诱变和同源基因(包括基因内杂交)引入遗传修饰,而无需插入不可杂交物种的遗传物质(转基因)。它们仅依赖于育种者的基因库,即可用于常规育种的全部遗传信息,包括可通过先进育种技术杂交的远亲植物物种。定向诱变技术可对生物体基因组中精确位置的 DNA 序列进行修饰。同源基因技术可将育种者基因库中已经存在的遗传物质插入生物体基因组中。内部遗传是同源遗传的一个子集,其结果是在基因组中插入由育种者基因库中已经存在的两个或多个 DNA 序列组成的重排遗传物质拷贝。
NGT 描述了改变生物体遗传物质的各种技术。2001 年,欧盟通过了关于转基因生物 (GMO) 的立法,当时这些技术还不存在。目前,通过 NGT 获得的植物与 GMO 遵守相同的规则。为了更好地反映 NGT 植物的不同风险状况,已发布的提案为 NGT 植物的商业化创建了两条不同的途径。将考虑与基因改造的广度和性质相关的五种不同标准(在提案附件 1 中定义)。一方面,可以自然发生或通过常规育种产生的 NGT 植物将接受验证程序。如果它们符合标准,它们将被视为常规植物,因此不受 GMO 立法的要求。因此,无需进行风险评估,并且可以将它们标记为与常规植物类似。相反,不符合标准的 NGT 植物将满足当前 GMO 立法的要求,将接受风险评估,并且只能在授权程序后进行商业化。尽管如此,对于这些植物,将有专门的检测方法和定制的监测要求。在所有情况下,都需要对基因改造进行完整的分子表征,但对潜在环境或食品和饲料风险的任何进一步分析都应由合理的风险假设引发。如果没有这样的假设,分子表征就足够了。
7 out of 16 panel members are actively involved in the development of genetically engineered (GE) plants, including plants obtained from new genetic engineering (NGTs); the chair of the panel advises industry on issues related to EFSA core activities, apparently without EFSA identifying this as a conflict of interest; five experts are or were involved in projects with industry, including Limagrain, Syngenta or Corteva (formerly DowDuPont/Pioneer); five experts are listed as inventors in patent applications and many of these applications were filed by industry; six experts are or were involved in lobbying activities in regard to GE plants, most of these activities were to do with the deregulation of NGT plants; there are various cases of lobbying activities not mentioned in the respective dois.
目前,全球多个地区正在就新基因组技术 (NGT) 的监管及其在农业中的应用进行讨论。例如,欧盟委员会提议对 NGT 植物实行具体监管。需要回答各种问题,例如,作为审批程序的一部分,NGT 引起的有意和无意的基因改造必须在多大程度上接受强制性风险评估。本综述主要关注 NGT 应用可能导致的意外基因改变的发现。更具体地说,本综述涉及核酸酶 CRISPR/Cas 的应用,这是目前开发 NGT 植物的最重要工具,以及它在目标 DNA 序列上引入双链断裂 (DSB) 的潜力。为此,我们确定了与传统育种中使用的非靶向诱变方法相比的差异。本综述得出结论,NGT 过程引起的意外基因改变与风险评估有关。由于 NGT 的技术特性,非预期变化的位点、基因组背景及其频率(就特定位点而言)意味着,通过常规方法,产生的基因组合(预期或非预期)可能不太可能发生。这反过来意味着生物效应(表型)也可能不同,并可能对健康和环境造成风险。因此,我们得出结论,对预期和非预期基因变化的评估应成为 NGT 植物强制性全面分子表征和风险评估的一部分,这些植物旨在释放到环境中或获得市场授权。