肽受体放射性核素疗法(PRRT)使用177个神经内分泌肿瘤(NET)的177 lutetium-dota-crottreotate(Lutate)现在在许多国家可以使用的批准治疗方法,尽管原发性或次要抵抗力继续限制其有效性或耐用性。我们假设,全基因组CRISPR/CAS9筛查将确定对黄体和基因靶标的反应的关键介体,这可能为净患者提供新型组合疗法的机会。方法:我们在露酸盐处理的细胞中使用了全基因组CRISPR-CAS9筛选,以鉴定影响细胞对鲁丁的敏感性或抗性的基因。命中通过单基因敲除验证。耐酸性细胞,以确认露丝的摄取和保留率,并持续生长抑素受体2(SSTR2)表达。基因敲除赋予黄酸盐敏感性的基因敲除,通过使用特定抑制剂和体内分析这些抑制剂与黄体结合使用的疗效,进一步表征了药理敏感性。结果:CRISPR-CAS9屏幕确定了对PRRT的耐药性和敏感性的几个潜在目标。两个基因敲除在体外赋予了放光抗性的基因敲除,ARRB2和MVP具有与Lutate结合和保留相关的潜在机制,分别对DNA破坏修复(DDR)途径的调节。屏幕表明,可以通过在DDR途径中涉及多种基因的损失来赋予对鲁酸酯治疗的敏感性,而非同源末端结合(NHEJ)的基因丧失是最致命的。通过基因丧失或通过两个不同抑制剂抑制键NHEJ基因PRKDC(DNA-PK)的丧失导致细胞在暴露于细胞时的生存率显着降低。在SSTR2阳性携带的小鼠中,Nedisertib(DNA-PK特异性抑制剂)和黄体的组合产生了对肿瘤生长的更强控制和与单独使用的肿瘤相比的生存率。结论:DDR途径对于传感和修复辐射诱导的DNA损伤至关重要,我们的研究表明,DDR途径的调节可能涉及对PRRT的耐药性和敏感性。此外,使用DNA-PK抑制剂与Lutate PRRT结合使用显着提高了治疗在临床前模型中的疗效,从而提供了进一步的证据证明该组合的临床功效。
时机是这项研究的目标之一,就是在受精后立即编辑早期胚胎,以避免一种称为遗传镶嵌的疾病。当两个或多个具有不同基因型的细胞中存在于单个受精卵中发展的个体中时,就会发生镶嵌。这通常发生在胚胎开始在第一个细胞分裂之前复制自己的DNA时进行编辑时。为了避免在这项研究中避免镶嵌性,在授精后六个小时以及在DNA合成开始之前,将指南,供体和Cas9蛋白质编辑摄入被引入牛胚胎中。对于希望将基因插入胚胎插入基因的研究人员的挑战之一是逃避细胞的主要DNA修复途径。在胚胎发育的早期阶段,修复倾向于通过NHEJ途径,而HDR编辑效率在早期胚胎中非常低。
基因组编辑技术显著提高了我们精确修改基因组和基因的能力,为设计内源途径和性状开辟了新的可能性。在玉米等作物中,已经证实可以实现小的插入/缺失、碱基变化和结构变异(Nuccio 等人,2021 年)。然而,虽然这些编辑通常会导致基因敲除 (KO) 或敲低,但许多农艺性状的改善需要更高的基因表达,有益的天然等位基因和转基因就是明证。因此,作物改良需要能够可预测和可调整地上调多个基因的工具,而没有使用转基因的技术限制和监管弊端。为了开发一种广泛适用的通过编辑增加基因表达的方法,我们寻找了一种玉米原生的小元素,可以将其插入内源启动子中以实现上调。我们在玉米基因组中发现了一个回文 12 bp 序列 GTAAGCGCTTAC(“植物增强子”,PE),它与农杆菌章鱼碱合酶启动子中已知的转录增强子元件(Bouchez 等人,1989)相似,并且也出现在其他作物(如大豆、水稻和大麦)的基因组中。为了在非同源末端连接 (NHEJ) 介导的 CRISPR/Cas 诱导的双链断裂修复过程中将 PE 插入玉米启动子中(图 1a),我们用金粒子轰击了来自 Cas9 表达系的未成熟玉米胚 (Lorenzo 等人,2022),这些金粒子包裹着 (i) 针对谷氨酰胺合成酶 1-3 (Gln1-3) 核心启动子的合成单向导 RNA (sgRNA),(ii) PE 三聚体 (3xPE) 作为双链寡脱氧核苷酸 (dsODN),两端有两个保护性硫代磷酸酯键,没有任何目标同源序列,和 (iii) 携带除草剂抗性标记和荧光蛋白的表达盒的质粒,允许在再生过程中进行选择和视觉筛选。39% 的再生系在目标启动子中携带 dsODN 衍生的插入。除了完美的 3xPE 插入,由于 NHEJ 的不精确性,我们还恢复了连接处有小插入/缺失的等位基因、截断处只留下一个或两个 PE 单体或插入一个以上 3xPE 元件的等位基因(图 1b)。插入等位基因通常存在于 50% 或 100% 的扩增子测序读数中,
基因组编辑是一种在基因组中特定位置生成 DNA 序列变体的技术。这可以发生在蛋白质的编码区,从而影响其功能,也可以发生在启动子区,从而影响细胞类型特异性或启动子活性的时间。基因组编辑工具箱中最著名的系统是 CRISPR/Cas9,基因剪刀的发明者 Emmanuelle Charpentier 和 Jennifer Doudna 因该系统获得了 2020 年诺贝尔奖 2 。替代系统是转录激活因子样效应核酸酶 (TALEN) 或锌指核酸酶 (ZFN)。所有这些编辑工具都以基因组中的特定序列为目标,并在目标位点诱导 DNA 双链断裂。一旦 DNA 被切断,细胞就会使用自己的 DNA 修复机制,包括几乎所有细胞类型和生物体中发生的两种主要机制:同源定向修复 (HDR) 和非同源末端连接 (NHEJ),分别导致靶向整合或基因破坏 3 。
CRISPR-Cas 系统可通过非同源末端连接 (NHEJ) 基因破坏突变等位基因来治疗常染色体显性遗传病。然而,目前的 CRISPR-Cas 系统无法将许多单核苷酸突变与野生型等位基因区分开来。在这里,我们对六种 Cas12j 核酸酶进行了功能性筛选,并确定 Cas12j-8 是一种具有超紧凑尺寸的理想基因组编辑器。Cas12j-8 表现出与 AsCas12a 和 Un1Cas12f1 相当的活性。Cas12j-8 是一种高度特异性的核酸酶,对原间隔区相邻基序 (PAM) - 近端区域中的单核苷酸错配敏感。我们通过实验证明 Cas12j-8 能够对具有单核苷酸多态性 (SNP) 的基因进行等位基因特异性破坏。Cas12j-8 识别简单的 TTN PAM,可提供高靶位点密度。计算机模拟分析显示,Cas12j-8 能够对 ClinVar 数据库中的 25,931 个临床相关变异和 dbSNP 数据库中的 485,130,147 个 SNP 进行等位基因特异性破坏。因此,Cas12j-8 特别适合用于治疗应用。
CRISPR/CAS技术的常见应用涉及工程基因敲击素,其中DNA序列被取代或插入特定的基因组基因座。In contrast with CRISPR-mediated indels, which result from the error-prone non-homologous end joining (NHEJ) pathway, gene knockins are often engineered via homology-directed repair (HDR), typically through the use of CRISPR reagents (Cas enzyme and guide RNA) in tandem with a DNA template that shares homology with the target site and encodes for the desired modification (Hsu et al., 2014;图1,下面)。用于HDR的模板可以是双链DNA(DSDNA,线性或质粒)或单链DNA(SSDNA),并且最近的发现表明,修复机制取决于使用的模板类型而变化。 dsDNA触发了一种反映减数分裂同源重组(HR)的RAD51依赖性机制,而HDR涉及ssDNA(称为单链模板修复或SSTR)是Rad51独立的,并且需要多个组件,并且需要多个组成部分的Fanconi Anemia Anemia(FA)维修路径(RICHARDARDSON ERATHEWAY(RICHARDARSEN)等。
成熟和新兴的基因编辑器 CRISPR–Cas 系统是一种广泛存在的原核生物防御系统,用于防御入侵的噬菌体和外来遗传物质。在自然界中,它们由 (1) 效应模块(在第 1 类 CRISPR 系统中是蛋白质复合物,在第 2 类 CRISPR 系统中是单个效应子)和 (2) 适应模块(将外来序列整合到 CRISPR 阵列中,crRNA 从中表达)组成。由于这些系统是 RNA 引导的,因此可以通过改变 crRNA 的序列重新定位它们,这为可编程基因组编辑工具提供了一个起点,有关此类工具的开发已在其他地方进行了综述 5 – 13 。第一个被设计用于人类细胞的系统是 2 类 CRISPR–Cas9 系统 14、15,其中化脓性链球菌 CRISPR–Cas9 系统 (SpCas9;也简称为 Cas9) 是目前使用最广泛的系统。Cas9 在与向导 RNA(对于 Cas9 来说称为单向导 RNA (sgRNA))互补的靶位点处产生双链断裂 (DSB);在人类细胞中,这些 DSB 可以通过非同源末端连接 (NHEJ) 修复,这一过程通常会导致基因功能丧失。早期临床数据 16 表明,NHEJ 介导的基因敲除会降低致病蛋白的表达(见相关链接)。靶向的 DSB 也可以通过宿主细胞的内源性同源修复机制进行修复,从而整合由 Cas9 和 gRNA 随附的外源提供的模板 DNA。 Cas9 已被改造以实现其他基因组结果。通过突变 SpCas9 的催化残基(参考文献 17),Cas9 可以转化为可编程的 DNA 结合蛋白,通常称为死 Cas9 (dCas9)。尽管单独使用 dCas9 可以通过阻止 RNA 聚合酶的通过来减少靶基因转录,但 dCas9 与转录抑制因子(例如 Krüppel 相关框结构域 18)或表观基因组修饰因子(例如 DNA 甲基化酶 DNMT3A 19、20)的融合已促成 CRISPR 干扰系统的产生。类似地,dCas9 可通过融合转录激活因子(如 VP64(参考文献 21))或表观基因组修饰因子(如人类乙酰转移酶 p300(参考文献 22)或 TET1 脱甲基酶 19、23)用于靶向转录激活。
从前发表的那些(Lin等人)修改了所使用的原生质体再生方案(图1)(图1),2018年; Hsu等。,2019年)。我们方法的关键是一个事实,即细胞周期的阶段在很大程度上控制了途径的选择。nhej是G1,S和G2阶段中的主要DNA修复途径,而HDR仅在晚期和G2阶段发生(Hiom,2010; Puchta和Fauser,2014)。细胞周期同步已有效提高人类胚胎肾脏293T细胞的Ti效率(Li等,2014)。为了增加晚期和G2相细胞,将烟叶孵育在含有½的强度MS,0.4 M甘露醇,1 mg/L脑苯甲甲基乙酸(NAA)和0.3 mg/l动力蛋白(1N0.3K)之前的固体培养基(1N0.3K),请在原生物分离之前三天(图S1)。在N. Benthamiana中,为了简化过程,我们添加1 mg/l naa和
摘要:PARPI与电离辐射结合使用,已经证明了增强不同肿瘤细胞辐射敏感性的能力。理由是,暴露于辐射会导致DNA的物理和生化损害,从而促使细胞引发了三种主要的DNA修复机制。两个双链DNA断裂(DSB)修复途径:(1)非同源末端连接(NHEJ)和(2)同源重组(HR); (3)单链DNA断裂(SSB)修复途径(基本切除修复,BER)。在这种情况下,PARPI可以通过利用BER途径来充当放射增感器。这种机制增强了复制叉崩溃的可能性,因此导致持续性DSB的形成。一起,PARPI和放射疗法的结合是一种有效的肿瘤学策略。这种组合证明了其在不同肿瘤中的效率。但是,在前列腺癌中,只有临床前研究可以支持它,最近是一项正在进行的临床试验。本文的目的是对PCA中使用PARPI和放射治疗(RT)的当前证据进行审查,并就此主题提供未来的见解。
摘要:枯草芽孢杆菌是一种多功能的微生物细胞工厂,可以生产有价值的蛋白质和增值化学物质。长片段编辑技术对于加速细菌基因组工程以获得理想且遗传稳定的宿主菌株至关重要。在这里,我们开发了一种有效的CRISPR-CAS9方法,用于枯草芽孢杆菌基因组中的大规模和无疤痕基因组工程,该方法的阳性率为100%,最多可删除高达134.3 kb的DNA片段,是先前报告的3.5倍。还研究了使用异源NHEJ系统,线性供体DNA和各种供体DNA长度对工程效率的影响。然后将CRISPR-CAS9方法用于枯草芽孢杆菌基因组简化和一系列个体和累积的缺失突变体的构建,这些突变体进一步筛选了新一代生物燃料的异丁醇过度生产剂。这些结果表明该方法是一种强大的基因组工程工具,用于构建和筛选具有增强功能的工程宿主菌株,突出了合成生物学和代谢工程的潜力。
