在大脑中表达,尤其是在基底神经节中。其激活调节食物摄入量[7],并支持认知,抗焦虑和抗抑郁作用[8,9]。5-HT 4 R激动剂治疗人类中的慢性特发性结构[10]并改善记忆[11]。5-HT 4 R表达在异常食物摄入,情绪障碍和认知降低中有意改变[12-14]。令人惊讶的是,很少有研究集中在PD中的5-HT 4 R上,而无数的PD非运动症状commosempassessuchuchmaniftations [15,16]。作为第一个步骤,我们想知道使用大鼠和非人类灵长类动物(NHP)模型的现有脑库组织补充DA耗竭和L-DOPA后的纹状体5-HT 4 R是否会增加。然后,我们在第二个NHP中研究了其体内宠物成像调节。
尽管通常认为益生菌补充剂可以安全地用于健康个体,但它们可能会成为致病性并引起免疫功能低下的患者感染。许多接受化学疗法药物的患者由于化疗引起的白细胞减少症而削弱了免疫系统,因此,通常不建议接受接受癌症药物治疗的患者NHP补充剂(胶囊和片剂)。
由于与人类生物学相似性高,非人类灵长类动物 (NHP) 模型对于开发基于诱导性多能干细胞 (iPSC) 的细胞和再生器官移植疗法非常有用。然而,关于 NHP-iPSC(尤其是恒河猴 iPSC)的建立、分化和遗传改造的知识有限。我们通过结合 Yamanaka 重编程因子和两种抑制剂(GSK-3 抑制剂 [CHIR 99021] 和 MEK1/2 抑制剂 [PD0325901]),成功地从恒河猴外周血 (Rh-iPSC) 中建立了 iPSC,并通过造血祖细胞将这些细胞分化为功能性巨噬细胞。为了证实 Rh-iPSC 衍生的巨噬细胞作为疾病模型生物测定平台的可行性,我们通过 CRISPR-Cas9 敲除了 Rh-iPSC 中的 TRIM5 基因,这是一种物种特异性 HIV 抗性因子。TRIM5 敲除 (KO) iPSC 具有与 Rh-iPSC 相同的巨噬细胞分化潜能,但分化后的巨噬细胞在体外对 HIV 感染的敏感性有所增加。我们用于获得 Rh-iPSC 衍生的巨噬细胞的重编程、基因编辑和分化方案可应用于其他基因突变,从而扩大 NHP 基因治疗模型的数量。
由于与人类生物学相似性高,非人类灵长类动物 (NHP) 模型对于开发基于诱导性多能干细胞 (iPSC) 的细胞和再生器官移植疗法非常有用。然而,关于 NHP-iPSC(尤其是恒河猴 iPSC)的建立、分化和遗传改造的知识有限。我们通过结合 Yamanaka 重编程因子和两种抑制剂(GSK-3 抑制剂 [CHIR 99021] 和 MEK1/2 抑制剂 [PD0325901]),成功地从恒河猴外周血 (Rh-iPSC) 中建立了 iPSC,并通过造血祖细胞将这些细胞分化为功能性巨噬细胞。为了证实 Rh-iPSC 衍生的巨噬细胞作为疾病模型生物测定平台的可行性,我们通过 CRISPR-Cas9 敲除了 Rh-iPSC 中的 TRIM5 基因,这是一种物种特异性 HIV 抗性因子。TRIM5 敲除 (KO) iPSC 具有与 Rh-iPSC 相同的巨噬细胞分化潜能,但分化后的巨噬细胞在体外对 HIV 感染的敏感性有所增加。我们用于获得 Rh-iPSC 衍生的巨噬细胞的重编程、基因编辑和分化方案可应用于其他基因突变,从而扩大 NHP 基因治疗模型的数量。
抽象的大肠杆菌DNA速酶催化封闭的双链DNA的否定性超涂层,以ATP为代价。酶的酶的另外活性阐明了超涂层反应的能量偶联成分是ATP至ADP和ADP和PI的DNA依赖性水解,以及ATP通过gyrase裂解反应的DNA位点特异性的ATP改变。这两种DNA链的这种裂解是由稳定的Gy- Rase-DNA复合物的十二烷基硫酸钠处理的,该配合物被抑制剂氧甲酸捕获。ATP或不可水解的类似物,腺基-5'-二氨基磷酸酯(APP [NHLP),都会在Colel DNA上移动主要的裂解位点。这种切割重排的Novobiocin和Coumermycin al的预防将抗生素的作用位点放置在ATP水解之前的一个反应步骤中。步骤阻塞是ATP的结合,因为香豆素和Novobiocin在ATPase和SuperCoiling分析中与ATP竞争相互作用。 K;对于ATP而言,值比KM少四个数量级以上。这种简单的机制解释了药物对DNA回旋酶的所有影响。使用APP [NHP [NHP的另一种有效的反应竞争抑制剂催化YGYRASE的竞争抑制剂,表明将DNA驱动到更高的能量超胶结形式不需要高能键的裂解。 与Gyrase,App的底物水平(NHLP诱导与酶量成正比的超串联; a -0.3超螺旋转弯是根据Gyrase Frotomer A引入的。 我们假设ATP和APP [NH] P是回旋酶的构象变化的变构效应器,导致一轮超涂层。使用APP [NHP [NHP的另一种有效的反应竞争抑制剂催化YGYRASE的竞争抑制剂,表明将DNA驱动到更高的能量超胶结形式不需要高能键的裂解。与Gyrase,App的底物水平(NHLP诱导与酶量成正比的超串联; a -0.3超螺旋转弯是根据Gyrase Frotomer A引入的。我们假设ATP和APP [NH] P是回旋酶的构象变化的变构效应器,导致一轮超涂层。通过ATP水解的核苷酸解离,将回旋酶返回其原始构型,从而允许酶转移。伴随核苷酸亲和力改变的这种环状构象变化似乎也是其他多种操作中能量转导的共同特征,包括肌肉收缩,蛋白质合成和氧化磷酸化。
2010 年代 NHS 对其房地产和基础设施的历史性投资不足导致维修积压迅速增加,到 2022/23 年高达 116 亿英镑。超过一半(54%)的积压与“高风险或重大风险”有关,其中“高风险”积压比上一时期增加了 5.5 亿英镑以上。新医院计划 (NHP) 等资本投资项目应提供咨询机会
抽象的wependinnon-human灵长类动物(NHP),地中海消费术使乳房和乳房中乳酸杆菌的比例丰度转移了。此数据突出了有关肠乳腺微生物组互连的潜在联系。为了解决这个问题,我们比较了NHP研究中匹配的乳房和粪便样品中发现的细菌种群。饮食模式在两个地区同时改变了两个物种; lutetiensis链球菌和Ruminococcus Torques。当我们观察到乳房和肠道中乳酸杆菌丰度的类似趋势时,每个区域中鉴定出的物种都会有所不同。地中海饮食增加了乳房中乳酸杆菌的未指定物种,但在肠道中调节了动物乳杆菌和L. reuteri。我们还研究了肠道渗透性对乳房微生物组的影响。无论饮食模式如何,表现出肠道通透性的生理测量的受试者(血浆脂多糖升高,绒毛长度降低和杯状细胞减少)显示出明显不同的乳腺微生物组。肠道屏障功能障碍与乳腺组织中α多样性增加和显着不同的β多样性有关。一起,我们的数据支持乳房微生物组的存在受饮食影响,而饮食很大程度上与肠道微生物组的种群不同,但对肠道渗透性敏感。
摘要 目的。脑记录在多个时空尺度上表现出动态,这些动态可以用脉冲序列和更大规模的场电位信号来测量。为了研究神经过程,重要的是不仅要在单个活动尺度上识别和建模因果关系,还要在多个尺度上识别和建模因果关系,即脉冲序列和场电位信号之间。标准因果关系度量在这里不直接适用,因为脉冲序列是二值,而场电位是连续值。因此,重要的是开发计算工具来恢复行为过程中的多尺度神经因果关系,评估它们在神经数据集上的性能,并研究多尺度因果关系建模是否可以提高神经信号的预测能力,使其超出单尺度因果关系所能达到的范围。方法。我们设计了一种基于有向信息的多尺度模型的 Granger 类因果关系方法,并评估其在现实的生物物理脉冲场模拟和两个执行运动行为的非人类灵长类动物 (NHP) 的运动皮层数据集中的成功率。为了计算多尺度因果关系,我们学习了点过程广义线性模型,该模型基于脉冲序列和场电位信号的历史来预测给定时间的脉冲事件。我们还学习了线性高斯模型,该模型基于场电位信号自身的历史以及二元脉冲事件或潜在放电率的历史来预测给定时间的场电位信号。主要结果。我们发现,尽管存在模型不匹配,但我们的方法仍揭示了生物物理模拟中真正的多尺度因果关系网络结构。此外,与仅对单尺度因果关系进行建模相比,在 NHP 神经数据集中具有已识别多尺度因果关系的模型可以更好地预测脉冲序列和场电位信号。最后,我们发现与 NHP 数据集中的二元脉冲事件相比,潜在放电率是场电位信号的更好预测因子。意义。这种多尺度因果关系方法可以揭示跨大脑活动时空尺度的定向功能相互作用,从而为基础科学研究和神经技术提供信息。
通过自然感染途径接种疫苗是疫苗学中一种有吸引力的免疫策略。在结核病方面,近年来,通过呼吸道接种疫苗重新引起了人们的兴趣,并在不同的动物模型中显示出了有效性。在这种情况下,呼吸道疫苗接种会触发肺部免疫机制,而当疫苗通过肠外途径给药时,这种机制会被忽略。然而,粘膜抗体对疫苗诱导保护的贡献研究甚少。在本研究中,我们在小鼠和非人类灵长类动物 (NHP) 中通过粘膜给药评估了一种新型全细胞灭活疫苗 (MTBVAC HK)。通过鼻腔途径给予 BCG 致敏小鼠的 MTBVAC HK 显著提高了仅由皮下 BCG 赋予的保护效力。有趣的是,这种改进的保护在缺乏聚合免疫球蛋白受体 (pIgR) 的小鼠中不存在,这表明粘膜分泌免疫球蛋白在保护性免疫中起着至关重要的作用。我们在 NHP 中的研究证实了 MTBVAC HK 能够触发粘膜免疫球蛋白。重要的是,体外试验证明了这些免疫球蛋白在人类巨噬细胞存在下诱导结核分枝杆菌调理作用的功能。总之,我们的结果表明,粘膜免疫球蛋白可以通过疫苗接种来诱导,以提高对结核病的保护作用,因此,它们代表了下一代结核病疫苗的一个有希望的目标。
和有效性的 rVSV ZEBOV GP(ERVEBO™)疫苗,该疫苗含有默克公司的扎伊尔毒株,IAVI 现已拥有该技术的许可权。ERVEBO 已在美国、英国、欧盟、瑞士和 10 个非洲国家获得许可。ERVEBO 的有效性在使用单次肌肉注射的关键环形疫苗接种试验中得到证实。1 rVSV ZEBOV GP 在现场使用方面拥有丰富的经验,作为疫情控制措施的一部分已接种近 400,000 剂,且有对一千多名孕妇进行同情使用的经验。SAGE 对这种疫苗的建议现在包括孕妇。除成人外,数万名儿童也接种了 ERVEBO 疫苗,其中大多数未满 10 岁。迄今为止,VSV 平台尚未出现任何安全信号。将 ERVEBO 的有效性和安全性经验推断到 VSV-SUDV 被认为是有效的,因为唯一的区别是糖蛋白插入物。 VSV-SUDV 的 NHP 数据支持保护,包括 NHP 在受到攻击后不久接种疫苗的情况。人们相信疫苗的产量和易于生长将使其成为一种负担得起的产品。2. 来自 Sabin Institute 的 ChAd3-SUDV。这排在第二位,因为有
