考虑各种设计、运行条件和环境因素的声学效应,有效计算垂直起降场环境中的城市空中交通噪声足迹,对于在早期阶段限制噪声对社区的影响至关重要。为此,作者在 Fuerkaiti 等人 (2022) [ 11 ] 中提出了计算效率高的低保真方法,并将其扩展为计算飞机在一般 3D 环境中的噪声足迹。直射线传播器被高斯波束追踪器取代,该追踪器考虑了复杂的源方向性、3D 变化地形拓扑和风廓线。作者在之前的研究中已经验证了高斯波束追踪器的可靠性。在本文中,它进一步扩展为包括存在移动介质时的复杂源方向性。使用低保真工具链获得的噪声源存储在围绕飞机的球体上,并通过不均匀的各向异性大气传播。比较了针对不同地形拓扑结构、源方向性和风流条件预测的噪声足迹。结果表明,与平坦地形相比,对于所研究的情况,由于多次反射,建筑块在照明区域中使地面噪声水平增加了 5 dB;它们还通过在建筑物后面创建阴影区来屏蔽传入的声场。在静止的大气中,屏蔽作用随着频率的增加而增强。 变化
航空工业近几十年来最重要的研究趋势之一是努力设计和生产“更多电动飞机”。在此框架内,电气技术在飞行控制系统中的应用虽然缓慢但正在逐步增加:从引入电传操纵系统开始,然后用纯机电执行器部分替换传统的液压/电液执行器。这种演变使我们能够获得更灵活的解决方案,减少安装问题并增强飞机控制能力。然而,机电执行器 (EMA) 远非成熟的技术,仍然存在一些安全问题,这些问题可以通过增加其设计复杂性并因此增加生产成本来部分限制。开发强大的预测和健康管理 (PHM) 系统可以提供一种无需复杂设备设计即可防止发生严重故障的方法。本文介绍了用于作为主要飞行控制执行器的 EMA 的综合 PHM 系统研究的第一部分;介绍并讨论了该应用的特点,同时提出了一种基于短时间飞行前/飞行后健康监测测试的新方法。电机绕组中的匝间短路被确定为最常见的电气性能下降,并提出了一种用于异常检测和预测的粒子过滤框架,该框架具有自调节非线性模型。因此,通过最先进的性能指标评估了特征、异常检测和预测算法,并讨论了它们的结果。
