� 描述通用多传感器、多站网络的数学模型 � 与距离、角度和位移传感器相关的不确定性特性的标准规范 � 根据观察到的数据自动加权传感器数据的方法 � 用于计算与给定测量网络配置和传感器不确定性的目标坐标相关的不确定性的算法
WP 2:复杂几何 3D 标准 • 研究了用于校准复杂几何 3D 标准的测量任务和现有测量设备以及设计和生产标准所需的技术背景。 • 开发并生产了两种用于验证 3D 扫描仪性能的标准。 • 开发和生产了两种世界级的自由曲面工件 - 一个是非球面的,另一个是涡轮叶片形状的。 • 预计将生产渐开线齿轮标准件。校准程序已经开发。 • 波纹度工件可用并已校准,即校准程序已开发并且校准证书已存在。 • 生产的 2 种用于验证 3D 扫描仪性能的标准
NIMTech 国际研讨会 2011 年 2 月 22 日,德国不伦瑞克 _______________________________________________________________________________________
1 范围 本报告履行了 iMERA Plus 项目新工业计量技术 (NIMTech) 的交付成果 D3.7 - 多传感器网络验证实验评估报告。本报告描述了基于 NIMTech 交付成果报告 D3.1(1) 中描述的多传感器网络方法的激光跟踪器对准误差校准程序的验证。2 简介 NIMTech 交付成果报告 D3.1(1) [1] 描述了使用多传感器网络测量方法校准激光跟踪器对准误差的实验程序。在本报告中,我们介绍了该程序的实验验证,从而验证了多传感器网络方法。激光跟踪器校准的网络方法涉及使用激光跟踪器测量多个固定点的坐标。从几个不同的位置测量相同的点。然后通过使用最小二乘参数估计法拟合描述实验设置(跟踪器位置和方向、目标位置)和激光跟踪器误差的数学模型来处理这些测量的结果。为了验证这种方法,使用网络方法获得的校正参数根据 ASME B89.4.19 标准验证了 API T3 激光跟踪器的性能,并将这些结果与使用制造商的校准数据执行的类似 ASME B89.4.19 测试进行了比较。描述用于这项工作的激光跟踪器对准误差的模型 [2] 是从之前描述的 1,3 改编为更通用的形式。第 3 节简要介绍了新模型。第 4 节包含从网络测试获得的结果,第 5 节简要描述了 ASME B89 测试和获得的结果。3 激光跟踪器误差模型 3.1 激光跟踪器错位 理想的激光跟踪器(基于“经纬仪式”设计,干涉仪位于万向架上)可以通过图 1(左)中的设置示意性表示。竖轴和经轴正交且共面,激光束在中心点与两个轴相交并向外辐射,没有角度偏移。此外,仰角和方位角编码器完美地居中并垂直于经轴和竖轴,没有失真或比例误差。实际上,由于制造公差,所有激光跟踪器都可能出现错位和偏移以及其他机械缺陷。因此,更现实的几何形状类似于图 1(右)中所示的几何形状。基准轴、经线轴和激光束轴不再正交和相交;两个角度编码器都有刻度误差和失真;激光束不从轴的交点辐射,并且具有角度偏移,因此它不再垂直于经线轴。这些机械缺陷会导致范围和角度读数中的系统误差,如果不加以纠正,将导致测量误差。在实践中,激光跟踪器控制器对原始传感器数据进行软件校正,为用户提供准确的测量数据。该校正基于误差源模型和存储在控制器中的模型参数测量结果。本实验中测试的校准程序的目的是确定模型的参数及其相关的不确定性。