采用一锅法,在水溶液中使用两亲性嵌段共聚物合成氧化镍 (NiO) 纳米花。Pluronics F-127 嵌段共聚物在 NiO 纳米花的形成过程中起结构导向剂的作用。沉淀剂的受控水解缓慢释放出氨,氨可形成 Ni(OH) 2,后者在聚合物溶液中稳定下来。煅烧去除了纳米复合材料的聚合物部分,并将 Ni(OH) 2 转化为具有面心立方 (FCC) 相的 NiO。合成的 NiO 纳米花具有介孔结构,平均表面积为 154 m 2 /g。带负电荷的刚果红 (CR) 和带正电荷的 NiO 纳米花之间的物理吸附和静电相互作用使得 CR 染料能够在环境条件下吸附。染料的吸附遵循拟二级动力学,吸附剂通过煅烧再生,并以相似的效率循环三次。由 Elsevier BV 出版
为我们在地球上的生命,我们都依靠干净的水。无论如何,经常排放到天然水供应中的工业和住宅污染物增加了生态系统。几项研究报告说,包括玫瑰孟加拉,罗达矿B,亚甲基蓝色(MB),靛蓝,红色,焦糖,维多利亚蓝色,红色120,胸腺蓝色,eiochrome,erioChrome,erioChrome,eiiochrome,甲基蓝色(MB)和甲基蓝色(MB),1-5在整个生产和处理过程中丧失和处理的染料和处理。6这种染色的废水包含非生物降解,极具毒性和有色色素,可能对生物有毒且有害。7,8这促使来自世界各地的学者通过开发有效的方法来清洁或处理水来解决问题。污染的水可以通过分解
锂离子电池由于其高能量密度、优异的循环寿命和实惠的价格,已被广泛应用于消费产品和电动汽车。 [1,2] 然而,尽管锂离子电池中使用传统的石墨负极在循环过程中具有出色的稳定性,但由于其固有的低理论容量(372 mAh g 1 ),其循环容量受到限制。 因此,最近的研究主要集中在开发锂离子电池的高容量电极上,以满足当前消费者的需求。 因此,已经提出了许多新型负极材料来实现更好的循环性能。 特别是,过渡金属氧化物(例如Ni,Co,Fe等)作为用于锂离子电池的高容量负极而受到了广泛的关注,[3] 其中NiO因其高的理论容量(718 mAh g 1 )、可及性和价格实惠而受到特别的关注。然而,过渡金属氧化物仍有许多需要克服的限制,例如电子电导率低、初始库仑效率差、充电/放电过程中体积变化大,所有这些最终都会导致循环不稳定和能量密度损失。为了克服这些问题,可以使用多孔或纳米级过渡金属氧化物活性材料作为 LIB 阳极,以提供更大的表面积、充电/放电过程中的更低体积变化和更短的扩散路径。[4,5] 到目前为止,已经使用多种方法合成多孔纳米材料,包括气相沉积、[6] 脱合金、[7] 3D 打印、[8]
通过简单的合成方法利用基于地球丰富元素的低成本,高活性和鲁棒的氧气进化反应(OER)电催化剂,这对于通过水电解而对绿色水力产生而言至关重要。在这项工作中,Nio,Co 3 O 4和Nico 2 O 4纳米颗粒层具有相同的表面形态,通过简单的喷雾热解方法在相同的沉积条件下制备了相同的表面形态,并且相对研究了其OER活性。在所有这三个电催化剂中,NICO 2 O 4显示了420 mV的最低电位,以驱动基准电流密度为10 mA cm -2和最小的Tafel斜率(84.1 mV dec -1),这些密度与基准标准的商业RUO 2电催化剂的OER性能相当。NICO 2 O 4的高OER活性归因于Co和Ni原子之间电子性质的协同作用和调制,这大大降低了驱动OER活动所需的过电位。因此,据信,通过这种简单方法合成的NICO 2 O 4将是一种竞争性候选者作为工业电催化剂,具有高效率和低成本的大规模绿色氢生产,这是通过水电解产生的。
摘要:在这项研究中,通过在SI底物上的纳米结构NIO的直接自旋涂层制造了基于石墨烯/Nio/N-Si的自动宽带光电探测器。Nio/Si异质结构的Curren T – V Oltage测量表现出在光照明下具有增强的pho-drumerent的整流特性。在300 nm至800 nm的范围内测量了光反检测能力,并且由于NIO的宽带隙,观察到紫外线区域的较高光响应。顶部的石墨烯透明导电电极的存在进一步增强了整个测得的波长区域的响应性,从350至800 nm。,在插入石墨烯顶层时,发现NiO/Si检测器在350 nm处的光响应从0.0187增加到0.163 a/w。在零偏置处的高摄影电流比(≃104)表明该设备在节能高性能宽带光电检查器中具有有利的应用。
Ihsan Ali Mahar,Aneela Tahira,Mehnaz Parveen,Ahmed Ali Hulio,Zahoor Ahmed Ibupoto等。 材料科学杂志:电子学中的材料,2024,35(7),pp.490。 10.1007/S10854-024-12156-9。 hal-04577661Ihsan Ali Mahar,Aneela Tahira,Mehnaz Parveen,Ahmed Ali Hulio,Zahoor Ahmed Ibupoto等。材料科学杂志:电子学中的材料,2024,35(7),pp.490。10.1007/S10854-024-12156-9。hal-04577661
为了竞争生物系统的能力,必须在合成系统中实现对化学反应性的时间控制。大多数合成的自组装过程旨在生成具有高热力学或动力学稳定性的有序结构 - 这些结构处于能量景观的全球最小值或被困在局部最小值中。1通过使用外部刺激(例如pH,光或化学物种添加)来修改能量景观以创建新的最低限度,这些结构可以被迫重新排列新的最小值,从而产生刺激性反应性的自组装过程。2当这种方法产生高功能性系统时,3它要求操作员在适当的时间进行相反的刺激,以在其不同的功能状态之间来回切换系统。为了克服这一局限性并受到生物系统的启发,1 B,4化学家耦合了自组装和耗能的过程,以便自组装过程可以通过光,热或化学物质的形式通过An in的能量的An and and and ux来暂时表达不同的结构。1 b,5这些所谓的“转移自组装”需要持续的能量输入才能持续时间。如果停止了能源供应,这些结构拆除,它们的组件被初始
该医学方案是对在爱尔兰寻求保护的难民和申请人(以下称为疫苗接收者)进行Boostrix的特定书面指示,并且在公共卫生的爆发中,注册护士和注册助产士爆发了爆发。该医学方案对2024/2025卫生服务执行官(HSE),学校免疫计划(SIP)和国家免疫咨询委员会(NIAC)赶上免疫计划,在怀孕期间与NIAC建议以及公共卫生建议的AN爆发时,在怀孕期间的Boostrix疫苗接种。该医学协议可以在HSE的自愿和法定服务中采用的注册护士和注册的助产士,包括大规模疫苗接种诊所,这些诊所已进行了所需的教育和培训计划,以参考护理和助产士委员会(NMBI),国家免疫咨询委员会(NIA)(NIO)(NIO)(NIO)(NIO)(NIO)(NIO)(NIO)(NIO)(NIO)(NIO),并指导Boostrix,并指导Boostrix的特征(SMPC)详细介绍了www.hpra.ie
摘要。镍氧化物(NIO)是一种半导体材料,具有独特的电子结构。由于其独特的电子特性,NIO是光电子,照片催化和诸如太阳能电池等能量设备的各种应用的有趣候选人。在当前的工作中,已经进行了量身定制Nio乐队的差距。一种简单的共沉淀方法,然后使用热处理来合成材料。在热处理之前,对合成材料的X射线衍射研究显示出存在氢氧化镍[Ni(OH)2]。在1000 O C下钙化一小时,揭示了单相NIO。热处理后,发现发现粒径增加了。使用UV-VIS光谱法记录了[Ni(OH)2]和NIO的吸收光谱。分别观察到Ni(OH)2和NIO的TAUC图A的带隙为4.2 eV和1.8 eV。观察到,注意到NIO的带隙显着减少。通过使用FESEM进行表面形态学研究,这表明板材像[ni(oh)2]的结构一样转变为钙化时多面形的Nio。通过能量分散光谱分析证实了镍和氧的存在。
这项研究调查了电动汽车(EV)行业中特斯拉和NIO的市场动态,重点是Nio的创新电池作为服务(BAAS)模型及其定价策略。虽然Nio的竞争价格吸引了买家,但该研究表明,其低车辆和电池价格对盈利能力产生了负面影响。该研究还确定了Nio最近的市场份额下降以及其定价模型所带来的挑战。从可持续性的角度来看,该研究强调了特斯拉和尼奥制造过程中的重要淡水使用情况,这强调这对当地水资源产生了压力。为减少排放做出有意义的贡献,水回收的优化和制造业中的能源效率至关重要。该分析提供了有关Nio市场份额下降的见解,并为未来的市场参与提供了建议。