可打印的光学活性材料有限,需要定制的墨水配方。为了解决功能材料的有限可用性用于光电设备的喷墨制造,需要探索适用于具有不同组成的纳米颗粒的多功能墨水配方策略。这还将为在单个设备中探索多个纳米颗粒的探索新机会,以达到特定的光谱敏感性。在这里,我们开发了GQD的可打印墨水公式,nay-f 4:(20%yb和/或2%ER掺杂)UCNPS和PBS QDS Inks,并展示了它们用于基于石墨烯的光电探测器和荧光显示器等设备。通过开发和优化墨水配方,打印策略和沉积技术,以可控的方式沉积了光敏的纳米材料层,并将其集成到印刷的异质结构中。我们通过将其用作单层石墨烯(SLG)光电材料中的表面函数化层来体现纳米材料墨水制剂的潜力,其中可以实现r b 10 3 a w 1的光反应率,并且可以从gqd/slg到nir/slg和slg和slg dep dep dep and slg and slg和ppb and slg和pbs slg和pbs slg slg and slg slg和pps。我们还探索了多个墨水的沉积到一个结构中,说明可以产生诸如荧光显示器之类的设备,因为我们在此处使用CSPBBR 3 Perovskite NCS和UCNP喷墨印刷在柔性透明底物上。这项工作扩展了可打印的光活性纳米材料的材料库,并展示了其前瞻性用于印刷光电材料(包括柔性设备)。
摘要。虽然近红外(NIR)成像对于辅助驾驶和安全监控系统至关重要,但其单色性质会阻碍其更广泛的应用,这促使其开发了NIR到可见的翻译任务。但是,现有翻译的性能受到NIR和可见的想象之间被忽视的差异以及缺乏配对训练数据的限制。为了应对这些挑战,我们提出了一个新颖的对象感知到可见的翻译框架。我们的方法将可见的图像恢复分解为对象独立的亮度源和特定于对象的反射组件,从而在各种照明条件下分别处理它们以弥合NIR和可见成像之间的间隙。利用先前的细分知识增强了我们的模型识别和理解分离对象反射的能力。我们还收集了完全对齐的NIR可见图像数据集,这是一个大规模数据集,其中包括完全匹配的NIR对以及使用多传感器同轴摄像头捕获的可见图像。em-pirical评估证明了我们的方法优于现有方法,从而在主流数据集上产生了令人信服的结果。代码可访问:https://github.com/yiiclass/sherry。
最近有越来越多的证据将脑组织网络中断与多种神经退行性疾病联系起来,包括一种罕见的绝症——肌萎缩侧索硬化症 (ALS)。然而,不同研究中脑网络特征的可比性仍然是传统图论方法面临的挑战。解决此问题的一种建议方法是最小生成树 (MST) 分析,它提供了偏差较小的比较。在这里,我们评估了 MST 网络分析对功能性近红外光谱 (fNIRS) 神经成像模式记录的血流动力学反应的新应用,在基于活动的范式中研究额叶功能性大脑网络拓扑中的假设中断作为执行功能障碍的标志,执行功能障碍是 ALS 研究报告的最常见的认知缺陷之一。我们分析了从九名 ALS 患者和十名年龄匹配的健康对照者记录的数据,首先使用锁相值 (PLV) 分析估计功能连接,然后构建相应的个体和组 MST。我们的结果表明,在多个 MST 拓扑特性方面,组间存在显著差异,包括叶分数、最大度、直径、偏心率和度发散。我们进一步观察到 ALS 组中的全局转向更集中的额叶网络组织,这被解释为该队列中的网络更加随机或失调。此外,相似性分析表明对照组中各个 MST 的重叠略有增加,这意味着健康队列中的参考网络拓扑变化较低。我们的节点分析表明,健康对照组的主要局部枢纽在额叶皮质上分布更均匀,左前额叶皮质 (PFC) 的发生率略高,而在 ALS 组中,最常见的枢纽是不对称的,主要在右前额叶皮质中观察到。此外,还证明了全局 PLV (gPLV) 同步指标与疾病进展有关,一些拓扑特性(包括叶分数和树层次结构)与疾病持续时间有关。这些结果表明,失调、集中化和
¾所有个人都有权利期望他们将被对待,无论性别,性取向,残疾,外表,身体大小,种族,国籍或宗教如何。¾pnirs不会容忍任何形式的参与者的骚扰。骚扰和性别歧视,种族主义者或排他性评论或笑话是不合适的。骚扰包括对谈判或其他事件的持续破坏,不适当的身体接触,性关注或影射,未经同意的人进行故意恐吓,跟踪,摄影或记录。它还包括与性别,性取向,残疾,外表,身体大小,种族或宗教有关的进攻评论。¾所有沟通都应该适合包括许多不同背景的人在内的专业受众。性语言和图像不合适。¾酒精饮料。应过多的饮酒导致不尊重的行为,PNIRS保留要求与会者离开PNIRS赞助事件的权利。¾PNIRS旨在确保会议以合作,协作,支持性的环境为特征。始终,评论和批评应具有建设性和尊重的性质。¾任何希望举报违反本政策的参与者都应向任何地方组织委员会(LOC)成员或管理团队成员发言。¾我们重视您的出勤率。这就是为什么我们希望所有参与者在所有会议场所或相关社交活动中遵守这些规则的原因。
38。一个人超重的条件是什么?a)体重不足b)o besity c)低bmi d)a和c情感39。人们失去游戏时会有什么常见的情感?a)快乐b)悲伤c)冷静d)兴奋40。哪种情绪可以使您的心脏跳动更快,并且棕榈汗水a)幸福b)悲伤c)恐惧d)无聊41。当您必须在班级面前说话时,您会感觉到什么情绪A)平静b)紧张c)愤怒d)昏昏欲睡42。如果您完成了非常困难的事情,例如完成一个艰难的难题,您会感觉如何?a)骄傲b)害怕c)无聊d)悲伤43。如果您所有的朋友一起去看电影,而您被留在家中,您会感觉如何?a)快乐b)兴奋c)孤独d)自信44。通常称为a)多巴胺的应激激素b)5-羟色胺c)肾上腺素d)皮质醇45。大脑的哪一部分与情绪的处理最紧密相关?a)小脑b)下丘脑c)杏仁核D)额叶叶
NIR/VIS 单频激光器的封装挑战 Björn Globisch,TOPTICA EAGLEYARD,Rudower Chaussee 29,12489 Berlin EPIC 技术会议@柏林 Fraunhofer IZM,2024 年 6 月 4/5 日
Reviewer for the following scientific journals: Sep 2018 – current “Advances in Mathematics of Communication”, “IEEE Transactions on Information Theory”, “Finite Fields and their Applications”, “Designs Codes and Cryptography”, “Discrete Mathematics”, “Jour- nal of Algebra and its Applications”, “Cryptography and Communications”, “IEEE Communication Letters, “The Ramanujan杂志”,“组合学电子杂志”。
20 世纪早期之前,物理学语言建立了一个框架,理论上,所有现象对于近距离观察者来说都是可量化和可预测的。然而,随着量子力学的发现,这种确定性的世界观发生了根本性的改变,量子力学提出了真正的随机性和不可预测性。在过去的一个世纪里,许多突破性的实验都证明了这一基本定律,这些实验主要以光(量子)为中心。如今,人们越来越关注单光子的实际应用。在本论文中,我们研究了单光子的起源,并使用非线性光学过程设计了实验。深入研究细节,我们使用长度为 10、20 和 30 毫米的 ppKTP 晶体对二次谐波的产生进行了研究,并比较了结果,指出效率和温度带宽随长度变化的趋势相反。此外,我们还利用 BBO 晶体探索了下转换光子的数值和实验空间特性。还添加了一些结果来解释从相关光子对获得纠缠的过程。
本研究的目的是介绍一种辅助诊断帕金森病 (PD) 的方法,即将功能性近红外光谱 (fNIRS) 研究分类为 PD 阳性或阴性。fNIRS 是一种非侵入性光信号模式,可传达大脑的血液动力学反应,特别是大脑皮层血氧变化;与其他神经成像模式相比,它是一种非侵入性且具有成本效益的方法,因此值得探索其作为辅助 PD 检测工具的潜力。除了将 fNIRS 与机器学习相结合之外,这项工作的贡献还在于实施和测试了各种方法,以找到实现最高性能的实现。所有实现都使用逻辑回归模型进行分类。从每个参与者的 fNIRS 研究中提取了一组 792 个时间和光谱特征。在两个表现最佳的实现中,使用了一组特征排序技术来选择精简的特征子集,然后使用遗传算法对其进行精简。为了实现最佳检测性能,我们的方法达到了 100% 的准确率、精确率和召回率,F1 得分和曲线下面积 (AUC) 为 1,使用了 14 个特征。这大大推进了 PD 诊断,凸显了将 fNIRS 和机器学习相结合用于非侵入性 PD 检测的潜力。关键词:帕金森病、功能性近红外光谱、机器学习、特征子集选择、遗传算法
f NIRS在红外光学成像系统附近的功能性测量人类受试者前额叶皮层的氧气水平变化。每个F NIRS系统都会在受试者接受测试,执行任务或接收刺激的情况下实时监测大脑中组织氧合的,并允许研究人员定量评估大脑功能(例如注意力,记忆,计划和解决问题),而个人执行认知任务。使用改良的啤酒叶法律计算出血红蛋白水平的相对变化。受试者在额头上戴上F NIRS传感器(IR光源和安装在柔性带中的检测器),该传感器检测前额叶皮层中的氧气水平,并为氧气 - 血红蛋白和脱氧血红蛋白提供实时值。它提供了氧气变化的连续和实时显示,因为受试者执行了不同的任务。主题可以坐在计算机前,进行测试或执行移动任务。它与刺激呈现系统和Biopac的虚拟现实产品集成。强大的F NIR光谱成像工具测量有或没有氧气的血红蛋白血液中NIR光吸光度,并提供了类似于功能性MRI研究的正在进行的脑活动的信息。它消除了F MRI的许多缺点,并为认知功能评估提供了安全,负担得起的无创解决方案。该技术通过为研究设计提供更大的灵活性,包括在复杂的实验室环境中工作,并在非传统的实验室地点进行现场研究。