I.简介45 11。.no 47 A..no B. 的细胞靶 。 48 C.。没有与烷氧基和过氧自由基49 D.-no 50 E.无反应。 由氧化LDL C. LDL氧化的机制诱导的细胞事件52 D.-与氧化脂质和LDL E.硝基酪氨酸免疫反应性57 F.氧化机制的反应。.no B.。 48 C.。没有与烷氧基和过氧自由基49 D.-no 50 E.无反应。由氧化LDL C. LDL氧化的机制诱导的细胞事件52 D.-与氧化脂质和LDL E.硝基酪氨酸免疫反应性57 F.氧化机制的反应。
复杂的酶(Nathan和Xie 1994),以及NOS的六到八种同工型(Nathan and Xie 1994; Murad 1994; Murad 1994)已被从神经元,巨噬细胞和内皮细胞中鉴定出来。这些同工型被归类为本构或诱导。组成型同工型受Ca 2 +和钙调蛋白调节,代表了与稳态相关的一氧化氮产生的低输出途径。可诱导的NOS类型被内毒素和某些细胞因子激活,并且这种诱导被认为是一种产生一氧化氮的高含量机制,例如某些功能,例如宿主防御。在其作为神经调节剂的作用中,由本构神经元NOS引起的一氧化氮与N-甲基-O-Aspartate(NMDA)受体复合物有关。一氧化氮是通过激活NMDA受体门控离子通道引发的,该通道的一步可以增强Ca 2 +的流入到细胞中。ca 2 +然后用钙调蛋白与钙调蛋白结合,从而激活酶。激活的NOS可以将底物L-精氨酸转换为氧化物和L-甲氟氨酸。对一氧化氮在阿片类药物中的作用的兴趣 -
4. Zhang Q、Grossmann IE。工业需求侧管理的规划和调度:进展与挑战。替代能源与技术。Cham:Springer;2016:383-414。5. Schäfer P、Westerholt HG、Schweidtmann AM、Ilieva S、Mitsos A。基于模型的能源密集型工艺初级平衡市场竞价策略。Comput Chem Eng。2018;120:4-14。6. Baldea M。将化学工艺用作电网级储能设备。引自:Kopanos GM、Liu P、Georgiadis MC 编。能源系统工程进展。Cham:Springer;2017:247-271。7. Mitsos A、Asprion N、Floudas CA 等。新原料和能源工艺优化面临的挑战。 Comput Chem Eng。2018;113:209-221。8. Appl M. 氨。在:Elvers B,编辑。Ullmann 工业化学百科全书。2000 年。https://onlinelibrary.wiley.com/doi/10.1002/14356007.o02_o11。9. Nørskov J、Chen J、Miranda R、Fitzsimmons T、Stack R。可持续氨合成——探索与发现替代、可持续氨生产工艺相关的科学挑战 [Tech. Rep.]。美国能源部;2016 年。https://www.osti. gov/servlets/purl/1283146。访问日期:2017 年 11 月 20 日。10. Demirhan CD、Tso WW、Powell JB、Pistikopoulos EN。通过工艺合成和全局优化实现可持续氨生产。AIChE J。2018;65(7):e16498。11. Guillet N、Millet P。碱性水电解。引自:Godula-Jopek A 编辑。氢气生产:通过电解。Weinheim:威利在线图书馆;2015:117-163。12. Cheema II、Krewer U。电转氨哈伯-博世工艺设计的操作范围。RSC Adv。2018;8(61):34926-34936。13. Reese M、Marquart C、Malmali M 等人。小规模哈伯工艺的性能。 Ind Eng Chem Res。2016;55(13):3742-3750。14. Millet P. PEM 水电解。引自:Godula-Jopek A 编辑。电解制氢。Weinheim:Wiley Online Library;2015:63-114。15. Petipas F、Fu Q、Brisse A、Bouallou C。固体氧化物电解池的瞬态运行。国际氢能杂志。2013;38(7):2957-2964。16. Mougin J. 高温蒸汽电解制氢。氢能纲要。剑桥:爱思唯尔;2015:225-253。 17. Wang G, Mitsos A, Marquardt W. 氨基能源存储系统的概念设计:系统设计和时不变性能。AIChE J。2017;63(5):1620-1637。18. Chen C, Lovegrove KM, Sepulveda A, Lavine AS。用于氨基太阳能热化学能源存储的氨合成系统的设计和优化。Sol Energy。2018;159:992-1002。19. Allman A, Daoutidis P. 风力发电氨发电的优化调度:关键设计参数的影响。Chem Eng Res Des。2017;131:5-15。 20. Allman A、Palys MJ、Daoutidis P. 基于调度的时变运行系统优化设计:风力发电氨案例研究。AIChE J。2018;65(7):e16434。21. Du Z、Denkenberger D、Pearce JM。太阳能光伏供电的现场氨生产用于氮肥。Sol Energy。2015;122:562-568。22. Allman A、Tiffany D、Kelley S、Daoutidis P。结合传统和可再生能源发电的氨供应链优化框架。AIChE J。2017;63(10):4390-4402。23. Palys MJ、Allman A、Daoutidis P。探索模块化可再生能源供电的氨生产的优势:供应链优化研究。Ind Eng Chem Res。2018;58(15):5898-5908。24. Ghobeity A、Mitsos A。太阳能接收器和储存器的最佳设计和运行。J Sol Energy Eng。2012;134(3):031005。 25. Yuan Z, Chen B, Sin G, Gani R. 基于优化的化工过程同步设计和控制的最新进展. AIChE J. 2012;58(6):1640-1659.
一氧化氮(NO)最初以其在心血管功能中的作用而被发现,是生理过程中的关键分子,包括代谢,神经传递(包括记忆,学习,神经保护性和突触可塑性),免疫,繁殖等等。no可以通过酶一氧化氮合酶(NOS)的催化活性来合成,该酶在生物学上以三种同工型发现,或基于硝酸盐和亚硝酸盐的简单还原或非酶的非酶形式,或者是由NO-Donor S-硝基硫醇(R-SNO)。重要的是,NO缺乏在多种病理中被注意到,包括心血管疾病,癌症,勃起功能障碍,男性和女性不育以及线粒体疾病。虽然有几种途径可以导致NO的生物利用度降低(即消费,抑制和底物竞争),但作者的结论是多个途径在病理状态中共存。本文首次概述了NO发电的主要途径,NO在健康中的重要性,无清除和酶抑制以及补充的潜在益处。
S.选择性一氧化氮在单分散的过渡金属位点具有原子精确的协调环境。化学催化,3(6),100598-。https://dx.doi.org/10.1016/j.checat.2023.100598https://dx.doi.org/10.1016/j.checat.2023.100598
I.测量呼出的一氧化氮在哮喘,嗜酸性哮喘和其他呼吸系统疾病的诊断和管理中被认为是研究的,包括但不限于慢性阻塞性肺疾病和慢性咳嗽。II。 测量呼出的呼吸冷凝物在哮喘和其他呼吸系统疾病的诊断和管理中被认为是研究的,包括但不限于慢性阻塞性肺部疾病和慢性咳嗽。 注意:请参阅附录A查看以前版本的策略语句更改(如果有)。 策略指南编码有关详细信息,请参见代码表。 描述评估呼出的一氧化氮(NO)和呼出的呼吸冷凝物(EBC)作为诊断和监测哮喘和其他呼吸系统疾病的技术。 有商业上可用的设备,用于测量过期的呼吸和各种实验室技术,用于评估EBC的组件。 相关政策II。测量呼出的呼吸冷凝物在哮喘和其他呼吸系统疾病的诊断和管理中被认为是研究的,包括但不限于慢性阻塞性肺部疾病和慢性咳嗽。注意:请参阅附录A查看以前版本的策略语句更改(如果有)。策略指南编码有关详细信息,请参见代码表。描述评估呼出的一氧化氮(NO)和呼出的呼吸冷凝物(EBC)作为诊断和监测哮喘和其他呼吸系统疾病的技术。有商业上可用的设备,用于测量过期的呼吸和各种实验室技术,用于评估EBC的组件。相关政策
deta nonoates¼二乙烯胺N-二核酸酯; gsh¼谷胱甘肽; gsno¼s -Nitrosoglutathione; HASMC¼人主动脉平滑肌细胞; Huasmc¼人脐动脉平滑肌细胞; HUVEC¼人脐静脉内皮细胞; MOF¼金属有机框架;无¼一氧化氮; NP¼Nanoparpicle; pCl¼Poly(ε-丙二酮); pCl/pk¼poly(ε -caprolactone)/phos -phobetaination phobetaination jeratin; poss-pcu;多面体寡聚西锡烷烷烷基聚氨酯氨基甲酸酯; rsno¼s-亚硝基硫醇; SMC¼平滑肌细胞; Snap¼s-硝基 - N-乙酰苯胺胺; VSMC¼血管平滑肌细胞。
摘要随着全球衰老的增加,受脑血管疾病影响的人数也在增加,并且在流行病上,血管性痴呆的发生率与脑血管风险密切相关。然而,很少有治疗选择可以显着改善血管性痴呆患者的认知障碍和预后。在阿尔茨海默氏病和其他神经系统疾病中类似,突触功能障碍被认为是认知能力下降的主要原因。一氧化氮是涉及中枢神经系统多种生理和病理过程的普遍气态细胞使者之一。最近,一氧化氮与调节突触可塑性有关,并在血管痴呆的发病机理中起重要作用。这篇综述详细介绍了一氧化氮在血管性痴呆的生理和病理状态中的新兴作用,并总结了一氧化氮对突触功能障碍,神经炎症,氧化应激,血液 - 桥接障碍障碍的各个方面的各个方面的多种影响。此外,我们提出,使用某些特定方法靶向一氧化氮-SGC-CGMP途径可能会为血管痴呆提供新的治疗策略。关键词:内质网应激;内皮一氧化氮合酶;基因疗法;一氧化氮; NO-SGC-CGMP途径;突触功能障碍;血管痴呆