3D打印的医疗用途正在快速扩展,并且会改变医疗保健的大时间。这些用途可以分为四个主要领域:制造组织和器官,创建定制的植入物和假肢,对药物进行研究,并弄清楚如何将药物置于体内正确的位置。在医学中使用3D打印可以使诸如假肢,设备甚至药物之类的东西为每个人进行超级定制,这真的很酷。它还使事情变得更便宜,帮助人们更有效地工作,让任何人都可以在不需要花哨的机器的情况下设计东西,并将科学家聚集在一起从事项目。,但这并不是所有的阳光 - 在3D打印之前,仍有许多科学和监管挑战确实可以改变医疗保健。人们一直在医学上的3D打印中取得了重大进步,但他们仍在等待最具游戏规则的东西。通过3D打印制造的自定义助听器彻底改变了听力学领域,超过99%的现代助听器是针对个人用户量身定制的。人体的独特复杂性使3D打印模型对于手术制备必不可少,比传统的2D成像方法提供了更准确的表示。此外,神经外科医生可以从3D打印模型中受益,以更好地理解复杂的人体解剖结构。在许多情况下,这些模型有助于医学专业人员在手术前对患者的特定解剖学特征获得宝贵的见解。3D打印技术的最新进步正在彻底改变包括医学在内的各个领域。此外,3D打印的进步导致了定制的药物配方和新型剂型的形式,例如微胶囊和纳米舒张,这对个性化医学有希望。3D打印在医疗应用中的潜在好处包括增加定制和个性化,成本效率,提高生产率,民主化和协作。尽管有希望的应用,但3D打印仍面临一些挑战,包括不切实际的期望和炒作,安全和保安问题,专利和版权问题。虽然已经使用了某些应用程序,但例如器官打印等其他应用程序需要更多的时间来开发。可以在线找到有关3D打印医学应用程序的综合报告,其中包含详细的图像和说明。国家医学图书馆(NLM)提供了对科学文献的访问权限,并维护了一个数据库,其中包含有关医学中3D印刷的信息。但是,将其包含在其数据库中并不意味着与NLM或国家卫生研究院的内容认可或同意。最近的一篇文章回顾了将3D打印应用于医疗领域的一些最新发展,涵盖了当前的艺术状况以及用于医疗应用的3D打印的局限性。美国测试与材料学会(ASTM)国际委员会F42采用了添加剂制造(AM)来从三维数字数据中产生物理对象的技术。手术规划已演变为合并高级技术。在一项研究中,Vodiskat等。添加剂制造(通常称为3D打印)是一种制造方法,可以通过将材料融合或将材料融合到底物上或将物质融合或沉积物质来创建物体。此过程具有高度的用途,可以利用各种材料,例如粉末,塑料,陶瓷,金属,液体或活细胞。通过研究复杂的器官或解剖标本的解剖学和生理学,外科医生可以为操作创建个性化计划。3D模型使他们能够在进入手术室之前探索不同的方法并获得动手经验。此过程大大减少了操作时间并改善了结果。3D印刷患者特定的假体的最新进展使残疾人能够过正常生活。高质量的成像技术允许精确的解剖假体创建,影响包括牙科在内的各个医学领域。将尸体材料用于培训引起了道德问题和成本问题。3D打印通过从CT成像中重现复杂的解剖器官提供了一种新颖的解决方案,适用于没有尸体的情况。能够打印不同尺寸的多个副本的能力也有益于培训设施。可以直接印刷细胞的打印机的开发导致了毒性测试的细胞结构的自动产生,并针对疾病和肿瘤进行了新的治疗方法。这项技术通过允许对匹配天然细胞排列的组织的可重复打印来加速研究过程。使用3D打印模型来对复杂的先天性心脏状况进行术前计划。医学研究的应用包括生产人体器官和组织结构,将它们与模仿本地人体器官的功能相结合。下一步是在操作过程中打印可移植的器官或器官,彻底改变医学。药物输送也将随着3D打印成为药品不可或缺的一部分,可以实现指定剂量和持续的释放层。使用3D打印技术可以实现个性化治疗,并通过创建针对其解剖结构的定制药物输送设备来帮助患者减少药物。这些进步表明,3D打印正在改变医学,许多应用程序使进行详尽的审查变得具有挑战性。最近的几项研究集中在特定领域,例如组织和器官的医学成像,手术和生物打印。本综述旨在通过研究各种应用程序(包括个性化处理,术前计划模型和定制的药物输送设备)来检查2014年以来的发展,从而证明当前的艺术状况。他们采用了两种不同的市售技术来重建三名患者的缺陷,得出结论,有了良好的CT扫描数据,可以创建一种具有成本效益的3D印刷模型。另一个具有挑战性的区域是旧骨盆骨折手术,其中Wu等人。评估了在四年和9个临床病例中使用3D打印的骨盆模型进行术前计划。他们发现术前计划与术后结果之间有良好的相关性,但建议进一步研究以巩固这些模型的使用。Truscott等人。提出了3D打印模型的案例研究,这些模型可以帮助外科医生进行术前计划,从而从骨盆和股骨,眼窝和肩cap骨的CT扫描数据创建模型。他们使用激光插入技术从钛中脱颖而出,与CNC工艺相比,结论一下将材料废物最小化。研究人员使用3D打印技术成功地创建了耳朵假肢(PVDF)。假体对压力变化表现出很高的敏感性,表明在生物医学工程中使用了潜力。传统的患者特异性颅骨成形术假体很昂贵。相比之下,一种具有成本效益的方法使用丙烯酸骨水泥。但是,水泥的手动制造可能很麻烦,可能不会产生令人满意的结果。使用FDM创建了CT扫描数据的3D打印头骨,作为模板来塑造丙烯酸植入物。这种方法在临床环境中的有效性需要进一步研究。一种新型的陶瓷制造技术,结合了冻结的泡沫,实现了开放式孔连接的泡沫结构,可以用作下一代骨骼替代材料,用于个性化植入。提出了一种创建周期性蜂窝结构的设计方法,由材料制成的3D打印植入物将满足较轻的植入物的要求并满足审美和功能需求。最近的研究还使用了3D打印来再现具有精确反映个人特征的组织的巨大潜力的患者特异性组织材料。Khaled等。 Goyanes等。Khaled等。Goyanes等。3D打印模型在解剖学上是准确的,只要提供高质量的CT扫描数据。但是,它们可能不灵活,这使得在涉及大脑(大脑)的软组织的情况下进行应用。使用组合的3D打印,成型和铸造的一种建议的方法创造了逼真的,生理准确和可变形的人脑模型。研究人员已使用独特的技术成功地创建了个性化的大脑模型。这种突破允许创建解剖上准确且可变形的大脑模型,可用于手术计划或医学训练(图3)。此外,科学家还开发了具有成本效益的方法来生产人类解剖学对象的高质量复制品,以进行培训。3D打印技术的发展也导致了癌症研究的重大进步。通过使用HeLa细胞和水凝胶结构创建合成宫颈肿瘤,研究人员已经能够研究该疾病的生长和行为(图4)。这种创新的方法显示出令人鼓舞的结果,肿瘤增殖得更快并形成细胞球体。此外,生物打印已通过微流体网络引导细胞来创建复杂的组织结构。Drexel University的研究人员开发了定制的沉积设备,可以精确材料沉积和异质细胞共培养(图5)。在另一个突破中,科学家使用了3D打印的水凝胶支架来种植微藻和人类细胞的培养物。生物制造。2016; 138(4):041007。2016; 138(4):041007。微藻能够迅速生长,叶绿素含量在几天内增加了16倍。该技术有可能将氧或二级代谢物作为治疗剂提供。技术与生物学的交集导致了3D生物打印的开创性进步。康奈尔大学的研究人员成功地使用水凝胶作为细胞的脚手架打印了全尺寸三叶心脏瓣膜,展示了它们在医疗应用中的潜力。但是,他们指出原型的拉伸强度需要改进。爱丁堡的研究人员通过使用3D打印技术打印功能“迷你肝”,取得了重大进步。他们的创新在于保留3D藻酸盐水凝胶基质中脆弱的臀部细胞的生存力和多能性。这项工作对无动物的药物试验和个性化医学具有深远的影响。超出人体器官的范围,研究人员创建了一个3D形态空间,以描述各种尺度(包括细胞和动物生物)的生物结构。此工具使他们能够探索新的生物配置并研究有关进化的基本问题。此外,伦敦大学学院的研究人员还表明,在制造局部药物输送系统以治疗痤疮等疾病中,有3D生物打印的潜力。他们使用热熔体挤出将水杨酸加载到商业聚合物丝中,突出了该技术的多功能性。3D打印的多功能性可通过调整丝制剂来进行不同的剂量。3D打印技术因其在创建个性化医疗设备(包括药物片和假肢)方面的潜在应用而进行了探索。研究人员发现,立体光刻(SLA)方法可以生产具有精确接触甚至剂量输送的设备。使用桌面3D打印机成功打印了甲烯烃双层片,证明了其产生高质量药物片的潜力。他们比较了药物释放曲线,发现在14小时剂量周期中,一种设计保留在商业药物概况的10%之内。通过使用FDM工艺打印paracetamol的细丝,研究了不同形状对药物释放曲线的影响。他们的结果表明,使用传统方法很难制造复杂的几何形状,但可以更好地控制药物释放。3D印刷和医学生物印刷方面的最新发展在各个领域都具有巨大的潜力。在手术中,3D印刷模型可以帮助外科医生进行计划操作,缩短程序时间和改善结果。也可以快速,经济地创建特定于患者的假肢,使其成为传统解决方案的有吸引力的替代品。Zhao等,Snyder等人和Lode等人等研究人员的工作。已经证明了更准确的疾病模型的潜力,尤其是在癌症研究中。将微流体与3D生物构成整合起来,可以创建复杂的组织结构和共培养物,为功能器官的发展铺平道路。2014; 6(3):035001。 doi:10.1088/1758-5082/6/3/035001。目前,打印整个生物器官仍然是一个遥远的目标。虽然细胞打印可以产生强大的细胞培养,但创建具有必要结构完整性的结构仍然是一个重大挑战。水凝胶矩阵,印刷技术和微流体的整合是通过生物打印来开发功能性人造器官的关键步骤。在不久的将来,3D打印机可能在药房中很普遍,从而实现了个性化的药物输送和制造定制设备。例如,可以通过控制几何形状和精度来实现具有控制药物释放的打印平板电脑。3D印刷在医学中的应用是巨大而变革性的,从创建一次性物体到假肢。随着研发的继续,我们可以期望在个性化药物,器官印刷和手术计划等领域取得令人兴奋的进步。但是,这些技术仍处于早期阶段,需要在广泛采用之前进行进一步的创新和实际考虑。本文讨论了3D打印技术的应用和进步,尤其是在医学领域。作者参考了各种研究和研究论文,探讨了3D印刷在医学中的潜在用途,包括创建假肢,植入物和生物印刷。引用的论文涵盖了一系列主题,从钛植入物的生物相容性到开发用于测试药物毒性的芯片技术。几项研究探讨了3D打印在手术和医学中的使用。生命科学工程学。讨论的其他领域包括三维生物印刷,医学成像和假肢的计算机辅助制造。一些好处包括提高手术计划中的准确性和精度,减少了传统方法上花费的成本和时间,以及改善患者的结果。研究人员还使用3D打印来为具有独特需求的患者创建定制的植入物和假肢。3D印刷在医学中的其他应用包括为训练目的创建实际的器官和组织模型,开发了个性化的神经外科手术计划的大脑模型,以及用诸如压力和温度等内在特性的感觉耳朵假体制造感觉耳朵假体。研究还研究了使用3D打印来生产患者特异性的丙烯酸颅骨成形术,定制的骨盆损伤模板和具有量身定制的机械性能的功能多孔结构。此外,研究人员还探索了用于生物医学应用的陶瓷和金属陶瓷复合材料的创新制造方法。3D打印在手术中的优点包括其创建复杂形状和结构,减少废物和材料消耗的能力,并提高手术计划的准确性和精度。但是,这项技术也存在一些挑战和局限性,例如对专业设备和专业知识的需求以及对灭菌和感染控制的潜在关注。总体而言,3D打印有可能彻底改变手术和医学的各个方面,从术前计划到植入植入物和患者护理。2015; 15(2):177–183。2015; 15(2):177–183。Zhang等人,用于体外Zhang T,Zhang T,Cheng S,Sun W.宫颈肿瘤模型的HeLa细胞三维印刷。Zhang等人,用于细胞设备的微流体歧管制造Snyder J,Son AR,Hamid Q,Sun W.通过精确挤出沉积和含细胞装置的复制模制来制造微流体歧管。制造科学与工程杂志。lode等人,绿色生物打印Lode A,Krujatz F,BrüggemeierS,Quade M,SchützK,Knaack S,Weber J,Bley J,Bley T,Bley T,Gelinsky M. Green Bioprinting:光合作用藻类Laden Hadegae Laden Hydogel scapforts的生物性和医学物质。duan等人,异质主动脉阀Conduits Duan B,Hockaday LA,Kang KH,Butcher JT的3D生物打印。与藻酸盐/明胶水凝胶异质主动脉瓣导管的3D生物打印。生物医学材料研究杂志研究部分A。2013; 101(5):1255–1264。 Faulkner-Jones et al., Bioprinting of human pluripotent stem cells Faulkner-Jones A, Fyfe C, Cornelissen DJ, Gardner J, King J, Courtney A, Shu W. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. 生物制造。 2015; 7(4):044102。 ollé-Vila等,合成器官和类符号的形态 - ollé-vila A,Duran-Nebreda S,Conde-Pueyo N,MontañezR,SoléR。 综合生物学。 2016; 8(4):485–503。 受控释放杂志。 2016; 234:41–48。2013; 101(5):1255–1264。Faulkner-Jones et al., Bioprinting of human pluripotent stem cells Faulkner-Jones A, Fyfe C, Cornelissen DJ, Gardner J, King J, Courtney A, Shu W. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D.生物制造。2015; 7(4):044102。ollé-Vila等,合成器官和类符号的形态 - ollé-vila A,Duran-Nebreda S,Conde-Pueyo N,MontañezR,SoléR。综合生物学。2016; 8(4):485–503。 受控释放杂志。 2016; 234:41–48。2016; 8(4):485–503。受控释放杂志。2016; 234:41–48。2016; 234:41–48。Goyanes等人,3D扫描和印刷,用于个性化药物交付Goyanes A,Det-Amornrat U,Wang J,Basit AW,Gaisford S. 3D Scanning和3D打印作为用于制造个性化局部药物输送系统的创新技术。Khaled等人,桌面3D打印的受控释放制药双层片Khaled SA,Burley JC,Alexander MR,Roberts CJ。桌面3D打印受控释放的药品双层平板电脑。国际药品杂志。2014; 461(1):105–111。 Goyanes等人,几何形状对3D印刷片剂Goyanes A,Martinez PR,Buanz A,Basit AW,GaisfordS。几何形状对3D印刷平板的药物释放的影响。 国际药品杂志。 2015; 494(2):657–663。2014; 461(1):105–111。Goyanes等人,几何形状对3D印刷片剂Goyanes A,Martinez PR,Buanz A,Basit AW,GaisfordS。几何形状对3D印刷平板的药物释放的影响。国际药品杂志。2015; 494(2):657–663。2015; 494(2):657–663。
NLM 提供对科学文献的访问,但并不意味着 NLM 或美国国立卫生研究院认可其内容。详细了解 PMC 免责声明和版权声明。2021 年 2 月 1 日发表在 PMC 上的一项研究发现,自闭症谱系障碍 (ASD) 出现在幼儿时期,当时婴儿从正常的行为特征过渡到幼儿期表现出 ASD 特征。前瞻性脑成像研究通过揭示 ASD 的神经生物学和发育过程,显示出在症状前检测和为早期干预提供信息方面的巨大希望。本文回顾了从出生到幼儿期 ASD 大脑发育的神经影像学研究,将这些发现与候选神经生物学机制联系起来,并讨论了对未来研究和临床实践的影响。在美国,ASD 的患病率为 1/59,其特点是症状特征各异,社交沟通障碍和限制性重复行为的严重程度各不相同。尽管人们对了解自闭症的神经生物学非常感兴趣,但大多数研究都是横断面研究和诊断后研究,涉及的年龄范围很广。最近的前瞻性研究跟踪了高风险兄弟姐妹从婴儿期到幼儿期的情况,发现自闭症的诊断症状在生命的第一年和第二年的后半段出现。运动技能、对面部和社交场景的关注、对名字的反应、视觉接收和语言技能的差异在生命第二年的早期也很明显。这些行为发生在出生后大脑发育的高度动态时期,其特点是大脑结构和功能发生重大变化。自闭症谱系障碍 (ASD) 患者的大脑发育已得到广泛研究,研究使用了 MRI 等神经成像技术。研究表明,非典型大脑表型在婴儿期出现,通常在两岁左右症状巩固之前。研究表明,后来患上自闭症的婴儿在 12 至 24 个月之间表现出更快的总脑容量增长速度,与非自闭症同龄人相比,这些个体的脑容量有所增加。最近的研究还将生命第二年期间大脑总体积的变化率与 ASD 相关的社交缺陷的严重程度联系起来。此外,研究表明,大脑过度生长不是出生时存在的,而是在生命第一年的后期出现的。这些发现对临床实践具有重要意义,并强调需要进一步研究以确定个人特定的发育问题领域,利用神经学特征分析病因异质性,将遗传变异纳入神经影像学研究,绘制大脑发育和行为表型的共现图,并将体内 MRI 与基础科学相结合,揭示 ASD 病理生理学的机制见解。研究发现,6 至 12 个月大的婴儿的大脑发育显著增长,后来患上了自闭症谱系障碍 (ASD),并在生命第二年出现大脑过度生长。这一发现支持了皮质过度扩张导致 ASD 大脑过度生长的假设。此外,使用机器学习方法通过 6 个月和 12 个月的 MRI 测量值进行诊断分类。研究还发现皮质表面积和厚度的差异检查,ASD 婴儿和幼儿与对照组之间没有发现差异。一项研究在某些情况下观察到局部皮质区域的厚度增加,这可能是由于年龄范围或使用的图像分析管道造成的。在青少年和成年人中,观察到皮质厚度差异,但影响的方向不同。混合纵向设计发现,对于患有 ASD 的个体,儿童时期的皮质厚度较大,随后在中期轨迹交叉,成年早期局部皮质厚度减少。研究表明,皮质厚度的异常模式在 3 岁后出现,此后遵循动态发展模式。还检查了皮质脑回模式,一项研究发现 3 岁时患有自闭症的男孩的梭状回脑回减少,并且脑回纵向增加。在患有自闭症谱系障碍 (ASD) 的个体中,在学龄前,颞叶、额叶和顶叶等区域的脑回增加,而正常发育的对照组局部脑回保持稳定或减少。这与之前关于患有自闭症的大龄儿童和成人大脑发育增加的发现一致。需要进一步研究来揭示患有自闭症的幼儿和婴儿大脑结构的发育模式。杏仁核是大脑的核心社交区域,引起了人们对自闭症病理生理学的极大兴趣,但很少有研究探索其在儿童早期的发展。研究表明,学龄前杏仁核增大与较差的社交和沟通结果相关,在患有 ASD 的女孩身上观察到了显著的影响。纵向调查揭示了患有 ASD 的幼儿的杏仁核大小、行为和遗传风险因素之间的复杂关系。作者比较了正常发育儿童和发育迟缓儿童的小脑体积,但没有发现行为和小脑体积之间的关联。然而,一项针对患有 ASD 的幼儿的研究报告称,小脑内的白质体积较大,灰质增加,尤其是在女性中。其他研究表明,病例组和对照组的小脑体积没有差异,而一些研究表明,与正常发育个体相比,自闭症儿童和成人的胼胝体可能较小。一项对具有自闭症家族风险的婴儿的纵向研究发现,他们的胼胝体面积在出生后第一年增加,但到 2 岁时就恢复正常。此外,在这些婴儿中还观察到轴外液量的增加,这种增加在患上自闭症之前一直持续到 24 个月。研究发现,6 个月时的轴外液量与自闭症谱系障碍 (ASD) 严重程度有关。在更大的婴儿群体中,与对照组相比,患有自闭症的婴儿轴外液量增加了 18%。该研究还报告称,自闭症症状最严重的儿童轴外液量增加了 25%。Shen 和同事发现,无论孩子是否有家族风险,轴外液的增加都会持续到 3 岁。他们还将体液增加与自闭症儿童的睡眠问题和非语言能力下降联系起来。使用扩散 MRI 的研究调查了 ASD 中的白质连接性和完整性。虽然很少有研究关注学龄前时期,但早期研究结果表明大脑某些区域的分数各向异性 (FA) 较高,表明白质特性更成熟。尽管在很宽的年龄范围内都出现了下降,但研究发现患有自闭症谱系障碍 (ASD) 的幼儿和儿童的分数各向异性 (FA) 较低。两项纵向研究揭示了 ASD 中白质发育的动态发展性质。一项研究跟踪了 6 至 24 个月大有患 ASD 风险的婴儿,发现那些后来患上 ASD 的婴儿最初表现出 FA 增加,随后成熟速度变慢。另一项研究报告了与年龄相关的 FA 异常变化,FA 在较小年龄时较大,后来变化速度变慢。这些发现表明 ASD 的特点是生命第一年 FA 增加,随后成熟速度变慢,最终可能导致年龄较大的儿童和成年人的 FA 值降低。最近的研究还探索了白质发育作为网络或连接组的情况。一项研究发现,与对照组相比,患有 ASD 的幼儿局部和整体效率降低,尤其是在感觉处理区域。另一项研究表明,在后来患上 ASD 的婴儿中,早在 6 个月大时,白质网络效率就存在缺陷。此外,研究将白质发育与幼儿的 ASD 相关行为联系起来,包括限制性和重复性行为以及对感觉刺激的反应。语言分数的个体差异与白质发育的差异有关。对有自闭症谱系障碍 (ASD) 家族风险的婴儿的研究发现,大脑结构的改变可能导致 ASD 的行为紊乱。功能性磁共振成像研究揭示了神经活动对听觉刺激的反应存在差异,包括大脑半球之间的同步性降低和语言网络的异常侧化。与对照组相比,患有自闭症的幼儿表现出较弱的半球间同步性,双侧颞叶和额叶区域的激活度降低。该研究还发现大脑与行为之间的关系呈负相关,表明自闭症患者的语言区域功能特化异常。研究表明,婴儿在患上自闭症谱系障碍 (ASD) 后,某些区域(如扣带回和岛叶)的大脑活动可能会发生变化。然而,还需要更多的研究来证实这些模式是否是自闭症所特有的。研究还发现,患有自闭症的小男孩的杏仁核与其他参与社交沟通和重复行为的大脑区域之间的联系减弱。一项针对有患自闭症风险的婴儿的研究发现,不同大脑网络的功能连接与后来的限制性和重复性行为的发展之间存在关联。然而,随着孩子长大,这种关联的方向发生了变化。研究还表明,静息状态连接可用于预测 6 个月大婴儿的诊断结果。早在 6 个月大时,患上 ASD 的婴儿就表现出异常的白质发育和脑脊液量增加,这与运动延迟和非典型视觉定向相吻合。大脑变化先于定义 ASD 特征的出现,并与生命第一年的行为变化有关。这些发现表明,大脑表型保持稳定,而 ASD 症状在生命第二年巩固。跨多个范式的研究(包括每个表型的纵向研究)支持此处提出的发现(图)。双条表示轨迹的未知或记录不全的起点和/或终点。顶部面板中的虚线表示典型的大脑发育,上下偏差表示相对于对照组的大脑表型增加或减少。例如,与对照组相比,ASD 中的分数各向异性在 6 个月时增加,在 12 个月时保持不变,从 24 个月到 36 个月时降低。重复行为和社交缺陷持续超过 36 个月,没有被引用,因为这些是自闭症患者的诊断特征。第一年的表面积过度扩张先于第二年的大脑过度生长34。同时,对名字的反应改变从 9 个月开始,并持续到 24 个月21,与对照组相比,注意力轨迹不同19,自闭症症状的出现9,11–14。这些发现有助于形成一条发展时间表,其中与自闭症和风险相关的大脑和行为表型在前驱期出现,大致在两岁生日之前,此后诊断症状得到巩固。在灰质发育和皮质表面积扩大的推动下,头两年大脑快速生长27。然而,在 ASD 中,这种出生后的轨迹被打乱了。行为和神经影像学研究表明,皮质表面积的过度扩张与 6 至 12 个月前观察到的运动、感觉和视觉缺陷的前驱期同时发生,随后在第二年出现大脑过度生长和自闭症社交缺陷2。这凸显了控制表面积扩张的机制在 ASD 病理生理学中的核心作用。扩张被认为是由神经祖细胞增殖、分化和迁移113–116 控制的,oRG 细胞群扩张与大脑大小直接相关113。神经祖细胞增殖和神经发生在 ASD 发展中的潜在作用得到了临床前、遗传、尸检数据118 和最近研究的支持,这些研究表明来自 ASD 患者的细胞存在过度增殖。此处给出文章文本 大脑生长加快,特别是某些区域(例如视觉皮层)的大脑生长加快,可能是自闭症综合征的标志,包括 16p11 缺失、PTEN 和 Chd8 突变。研究表明,神经元增殖增加会导致神经连接发生变化,进而影响电路功能和行为。对小鼠的研究还发现,上层锥体神经元的过度繁殖会破坏正常的大脑发育,导致突触连接改变和类似自闭症的行为。此外,研究报告称,患有大头畸形的 ASD 患者的突触形成和神经元兴奋性发生了改变,抑制性神经元和突触也增加了。这些发现表明,大脑生长异常和神经回路中断可能是某些自闭症谱系障碍 (ASD) 亚型的潜在因素。此外,在 ASD 小鼠模型中观察到了经验依赖性可塑性和突触修剪机制的中断,这凸显了平衡兴奋性和抑制性突触在调节神经元之间竞争方面的重要性。研究还表明,6 至 12 个月的皮质过度扩张可能导致视觉定向行为缺陷,最终导致电路修剪效率低下和 ASD 特征的出现。此处给出文章文本自闭症谱系障碍 (ASD) 中存在轴外液体量表明存在超出当前理解的其他致病机制。最近的研究强调了脑脊液 (CSF) 在大脑发育和功能中的作用,研究结果表明脑脊液循环中断和代谢物积累会影响大脑功能。在表面积过度扩张之前增加的脑脊液量表明脑脊液在 ASD 的病理生理学中起调节作用。胼胝体形态和白质微结构的改变暗示着髓鞘形成、轴突口径和连接性控制过程。髓鞘形成基因富集的小鼠模型已发现少突胶质细胞功能发生显著改变,导致髓鞘厚度减少和连接效率低下。这些发现支持了这样一种观点,即 ASD 源于多种产前和产后致病机制,包括神经增殖、迁移、突触发生、修剪、髓鞘形成以及轴突发育和连接。尽早发现婴儿期的 ASD 对开发更有效的治疗方法至关重要。这一过程的复杂性反映在 ASD 患者身上观察到的多种症状和临床结果上。最近的研究使用机器学习技术分析婴儿 MRI 扫描,并以高精度预测 24 个月时的 ASD 诊断。特别是两项研究表明,生命第一年收集的 MRI 扫描可用于准确识别将继续发展为 ASD 的婴儿。一项研究开发了一种深度学习算法,该算法正确预测了 106 名高危婴儿的诊断结果,灵敏度为 88%,特异性为 95%,阳性预测值为 81%。这种方法优于生命头两年的行为测量,并有可能在大脑发育的关键时期实现早期干预。另一项研究使用支持向量回归机在 59 名高危婴儿样本中预测 ASD 诊断,灵敏度为 82%,特异性为 100%,阳性预测值为 100%。这些发现为使用 MRI 和机器学习技术进行更大规模的症状前诊断分类研究铺平了道路。在儿科神经影像学中使用数据驱动方法有望绕过事先进行特征选择的需要,从而实现更准确和更通用的模型。研究表明,深度学习 (DL) 方法可以实现更高的抽象和复杂程度,从而检测数据中的细微模式。然而,在经验丰富的专业人员(如人工智能科学家、统计学家或工程师)的监督下使用这些方法至关重要,他们经常将机器学习算法应用于高维数据集。对疾病的临床了解对于解释这些模型产生的复杂结果也至关重要。进行基于神经影像的预测研究的最佳实践包括确保足够的样本量和普遍性、解释和方法透明度。未来使用大型、公开可用的数据集的工作将有助于解决与样本量和类别不平衡相关的问题。解决这些问题需要开发新方法,例如合成过采样策略。了解从 MR 图像中得出的哪些特征有助于分类也至关重要。虽然目前的方法可以解释深度学习模型,但需要进一步研究来应对这一挑战。最终,在出版物中报告和共享机器学习算法的透明度对于共享知识和为该领域的最佳实践制定标准是必要的。该研究采用了机器学习算法,报告样本量、交叉验证、训练、测试程序、解决类别不平衡、调整参数和优化步骤。应包括解释结果的详细信息,包括识别算法学习的信息和临床相关的性能指标(特异性、敏感性、阳性预测值)。必须提供用于验证和复制的用于构建算法和进行分析的代码。大规模的症状前个性化预测对于塑造临床实践具有重大意义,必须仔细考虑伦理影响。神经科学中从群体层面的相关性到个体层面的预测的转变对于改善生活至关重要,首先是通过将模型应用于新的独立数据集来复制开创性的研究。心理放射学的发展已显示出希望,旨在实现精神疾病的个性化预测。将经过验证的算法整合到临床实践中符合精准医疗框架,为个体分配个性化治疗计划。早期诊断和干预至关重要;虽然存在针对 ASD 的循证行为干预,但预防性干预仍未经证实。神经影像学可以用作基于生物学的筛查工具,指导未来的研究。考虑到 ASD 和神经发育障碍的表型变异性,下一步的主要工作是开发方法来预测个性化关注领域。超过四分之一的有家族性 ASD 风险的婴儿在头几年会出现亚阈值异常行为,使他们成为有针对性干预的候选人。机器学习方法已经证明了使用新生儿扩散 MRI 对幼儿期认知结果的个性化预测。未来的工作应该将类似的方法应用于有 ASD 风险的婴儿。解析神经发育特征中的异质性是一种有前途的方法,可以了解 ASD 等复杂神经精神疾病的症状多样性。 NIMH 的 RDoC 项目专注于根据神经特征识别亚组,以揭示病因和治疗方面的见解。实施聚类算法可以帮助识别疾病的不同轨迹,可能反映不同的病因。虽然遗传研究已经确定了一些 ASD 病例中的新生突变,但常见的多基因变异被认为是大多数病例的原因。可遗传背景遗传变异、多基因风险之间的关系婴儿期和幼儿期大脑发育的特定个体差异以及原因仍然未知。最近对综合征型 ASD 的研究显示了背景遗传变异对幼儿行为发育的预测能力。未来的研究应将其扩展到特发性 ASD,使用神经影像学揭示早期行为表现的见解。患有 ASD 的婴儿表现出各种大脑表型,包括过度生长、液体量增加和白质发育异常,但没有一种足以预测诊断或确定因果机制。为了更好地理解这些表型及其与行为的关系,绘制从婴儿期到诊断期间大脑和行为表型的共同发展过程应该是一个主要的科学目标。先前的研究主要集中于对大脑发育的早期阶段进行建模,但需要更多地关注可能对自闭症谱系障碍 (ASD)185 至关重要的后期阶段。未来的研究应扩展到患有 ASD 和表现出大脑过度生长表型 119–121 的个体之外,以更深入地了解该疾病的根本原因。脑成像数据可以区分有患 ASD 风险的婴儿和正常发育的儿童,甚至在出现任何明显的行为问题之前。许多研究得出了几个关键发现,包括患有 ASD 的个体的脑容量增加、轴外液体量、白质发育改变和连接模式异常。这表明各种神经生物学因素都会影响儿童早期的大脑和行为发育。最近的进展促成了个性化预测模型的开发,用于识别患 ASD 风险较高的婴儿,强调需要有效的症状前干预措施。未来的研究应集中于研究病因异质性,并通过结合神经影像学、行为和基础科学研究的多学科方法将大脑和行为发育与潜在的遗传机制联系起来。该领域在描述婴儿期和幼儿期与自闭症相关的大脑表型方面取得了重大进展,包括大脑过度生长、脑脊液量增加、白质发育改变以及结构和功能连接模式异常。使用神经影像数据预测诊断和维度结果对推进临床实践大有裨益。未来的工作应侧重于解析自闭症的异质性、将遗传变异与脑影像数据联系起来、绘制发育大脑和行为表型的共现图表以及将神经影像研究与基础科学研究相结合。近年来,自闭症早期大脑和行为发育的研究取得了重大进展。研究揭示了从出生到学龄前自闭症症状的出现,神经成像技术揭示了大脑发育的不同模式。这些发现表明自闭症可能与早期大脑结构和功能异常有关。2017 年发表的一项研究提出了一个概念框架,用于理解自闭症早期大脑和行为发育。另一项研究发现,年仅 12 个月大的婴儿表现出重复性行为,这些行为后来成为自闭症谱系障碍 (ASD) 的特征。自闭症遗传学研究也取得了进展,一些研究表明兄弟姐妹中自闭症复发风险更高。此外,纵向研究追踪了自闭症症状随时间的发展,揭示了可以为早期干预和诊断提供信息的模式和轨迹。总体而言,这些研究有助于我们了解自闭症的复杂性和多面性,强调需要进一步研究其病因、病程和治疗。研究调查了有自闭症谱系障碍 (ASD) 风险的婴儿的早期运动能力和行为。这些研究旨在确定婴儿时期自闭症的潜在标志或指标,希望它们可以用作预测指标或后期诊断的预测指标。2019 年发表的一项研究发现,患自闭症风险较高的婴儿与风险较低的婴儿相比,表现出不同的运动能力。2012 年发表的另一项研究发现,婴儿的头部滞后与患自闭症的风险增加之间存在相关性。研究人员还探讨了注意力、社交参与和视觉处理在有自闭症风险的婴儿中的作用。例如,一项研究发现,后来被诊断为自闭症的婴儿早在 6 个月大时就表现出对社交场景的自发注意力下降。另一项研究发现,这些婴儿在受到干扰时不太可能与自己的面部互动。此外,研究还检查了有自闭症风险的婴儿对言语提示和听觉刺激的反应。2017 年发表的一项研究发现,这些婴儿对名字识别的反应与没有自闭症的婴儿不同。最近的研究集中于婴儿期的大脑发育,包括白质微结构、皮层下脑功能和皮层厚度。这些研究旨在确定 ASD 的潜在生物标记或了解潜在的神经机制。总体而言,这些研究表明,早期运动能力、注意力、社交参与和视觉处理可能是婴儿期 ASD 风险的重要指标。需要进一步研究才能充分了解这些因素与 ASD 发展之间的关系。研究表明,婴儿的白质微结构发育与认知能力密切相关。研究使用基于束的分析和功能连接映射等技术,研究了从出生到 2 岁期间大脑结构和功能的变化。一项研究发现,0-24 个月大婴儿的白质结构变化与 24 个月大婴儿的认知能力提高有关(Gao 等人,2015 年)。另一项研究发现,在 6 至 18 个月大婴儿出现自闭症样症状时,婴儿在 12 个月大时某些大脑区域的白质完整性会降低,这预示着 24 个月大婴儿的诊断结果会更准确(Emerson 等人,2017 年)。其他研究人员使用 MRI 扫描检查了患有自闭症谱系障碍 (ASD) 的婴儿的大脑,发现婴儿的大脑结构存在显著差异,包括某些区域的大脑尺寸增大(Piven 等人,1992 年;Courchesne 等人,2001 年)。一项较新的研究使用大量高风险婴儿,确定了自闭症的早期生物标志物,例如大脑区域间功能连接减少(Hazlett 等人,2017 年)。这些发现表明,早期生活经历和遗传倾向可以影响自闭症儿童的大脑发育。需要进一步研究以了解推动这些变化的潜在机制并制定有效的干预措施。注意:我将参考文献压缩为较短的格式,同时保留基本信息。如果您希望我扩展任何特定参考文献或提供更多详细信息,请告诉我!一系列研究调查了自闭症谱系障碍 (ASD) 患者从出生到 2 岁及以后的大脑发育和结构。该研究使用磁共振成像 (MRI) 和头围测量来检查自闭症儿童的大脑大小和形状。研究发现,在幼儿时期,大脑增大与自闭症男孩的退化有关。此外,后来患上自闭症的个体的皮质表面积在 2 岁之前增加。纵向 MRI 研究表明,自闭症患者的皮质发育持续到儿童早期。其他研究表明,2-3 岁的幼儿就存在脑成像异常,这表明自闭症可能是一种早期神经发育障碍。一些研究发现,一部分患有自闭症的男孩的表面积增加,但皮质厚度没有增加,而其他研究则使用基于表面的形态测量法来绘制患有自闭症的学龄前儿童的皮质解剖图。总体而言,研究表明,自闭症患者的大脑结构和发育从儿童早期开始就会发生改变。自闭症谱系障碍 (ASD) 的研究表明,大脑结构的变化,特别是皮质厚度的变化,可能与自闭症有关。研究发现,与没有自闭症的人相比,自闭症患者的皮质厚度往往会发生变化。然而,这些变化的程度和性质在不同的发育阶段会有所不同。一些研究表明,患有自闭症的儿童表现出额叶皮质褶皱增加,而年龄较大的青少年和成年人则表现出额叶皮质褶皱减少。此外,研究发现,患有自闭症的个体经常表现出脑沟大小和形状异常,这可能与社交沟通障碍有关。杏仁核是参与情绪处理的区域,也与自闭症有关。研究表明,患有自闭症的个体往往比没有自闭症的个体拥有更大的杏仁核,尤其是在幼儿和幼儿中。然而,杏仁核大小和自闭症行为症状之间的关系很复杂,受各种因素的影响。纵向研究为自闭症大脑变化的发展和进展提供了宝贵的见解。例如,一项研究发现,自闭症儿童的杏仁核体积随着年龄的增长而增加,而另一项研究发现,联合注意力技能与杏仁核体积的变化有关。脆性 X 综合征的研究强调了自闭症的异质性,脆性 X 综合征与自闭症有一些相似之处,但也表现出明显的大脑差异。总体而言,研究结果表明,大脑结构和功能在理解自闭症方面发挥着重要作用,需要进一步研究来阐明大脑变化与自闭症行为症状之间的复杂关系。一些发表在知名期刊上的重要研究包括:* Wolff 等人(2014 年)- 神经发育障碍:通过发展研究加速自闭症的进展。* Libero 等人(2018 年)- 自闭症谱系障碍年轻男孩局部脑回指数的纵向研究。* Williams 等人(2012 年)- 自闭症和阅读障碍皮质复杂性的球谐分析。* Kohli 等人(2019 年)- 自闭症谱系障碍儿童的局部皮质脑回增加,但青少年的局部皮质脑回迅速减少。这些研究表明,人们正在努力了解自闭症的神经基础,并开发有效的干预措施来支持患有这种疾病的人。研究调查了与自闭症谱系障碍 (ASD) 相关的大脑结构和发育变化。研究发现,患有自闭症的儿童,尤其是 2-5 岁的儿童,尾状核发育异常,而尾状核与重复行为有关。此外,由于家庭因素而患自闭症风险较高的婴儿被发现存在大脑解剖结构差异,包括皮层下和小脑区域,这预示着以后重复行为的出现。纵向研究还表明,患有自闭症的幼儿随着时间的推移,胼胝体形态会发生变化。这些变化可能与自闭症相关症状的发展有关,例如社交互动受损和沟通困难。此外,研究强调了小脑在自闭症中的潜在作用,几项研究表明自闭症患者的小脑体积和结构发生了改变。小脑参与运动控制、学习和情绪调节,可能导致自闭症中观察到的认知和行为症状。总体而言,这些发现表明,大脑发育和解剖结构的早期变化可能与自闭症症状的出现有关,特别是那些与重复行为和社交沟通困难相关的症状。本文讨论了一系列关于自闭症谱系障碍 (ASD) 儿童大脑发育的研究。该研究重点关注了自闭症儿童与非自闭症儿童相比,大脑中白质纤维和连接的发育情况。一项研究发现,自闭症儿童在幼儿期白质成熟速度加快。另一项研究发现自闭症儿童的白质完整性存在异常。第三项研究表明,后来被诊断患有自闭症的幼儿颞胼胝体纤维表现出多种结构异常。其他研究使用弥散张量成像 (DTI) 来研究自闭症儿童白质纤维和连接的发育情况。一项研究发现,6-24 个月之间,自闭症婴儿与非自闭症婴儿的白质纤维束发育存在差异。另一项研究发现,自闭症幼儿的白质连接异常,包括额叶可能存在轴突过度连接。总体而言,这些研究表明,自闭症儿童的白质纤维和连接发育可能存在异常,这可能与该疾病特有的社交和认知缺陷有关。研究发现,自闭症谱系障碍 (ASD) 患者的网络效率低下早在 24 个月大时就存在,这种现象可能会持续存在并随着时间的推移发展成更严重的症状。研究表明,有患自闭症风险的婴儿在 6-7 个月大时就会表现出异常的神经回路和白质微结构,尤其是在负责语言处理和社交互动的区域。此外,研究还发现,自闭症患者的大脑中与语言处理相关的脑区侧化往往会发生改变,这会影响他们处理和理解语言的能力。这种语言障碍被认为是自闭症早期出现的根本特征。此外,研究表明,自闭症幼儿的神经同步模式被破坏,这可能导致自闭症特有的社交和沟通障碍的发展。研究还探讨了自闭症幼儿的大脑功能与社交行为之间的关系。研究发现,与社交和感觉运动缺陷相关的神经回路功能连接异常可以预测自闭症的后期症状。最后,研究检查了患有自闭症的学龄前男孩语言变异的神经相关性,发现非典型语言处理模式与患自闭症的风险更高有关。总体而言,这些研究表明,大脑结构和功能的早期异常可能导致自闭症症状的发展,并强调早期诊断和干预的必要性。研究表明,患有自闭症谱系障碍 (ASD) 的儿童表现出大脑连接和发育中断,特别是在杏仁核和胼胝体等区域。研究还发现白质纤维束发育存在差异,这可能导致自闭症的发展。有患自闭症风险的婴儿的大脑功能和结构发生了改变,包括白质和胼胝体的变化。这些发现表明,早期干预可能有助于预防或减轻自闭症的影响。此外,研究表明,更广泛的自闭症表型早在婴儿期就可能出现,这表明自闭症是一种复杂的特征,不能仅仅归因于遗传因素。此外,对人类大脑发育的研究揭示了神经干细胞和祖细胞在大脑皮层形成中的作用。研究还表明,进化过程中的大脑皮层扩张可能与自闭症的病因有关。总的来说,这些发现强调了早期发现和干预自闭症风险患者的重要性,以及进一步研究这种复杂疾病的潜在机制和原因的必要性。注意:我在改写过程中进行了一些创造性的改动,使其更易读、更简洁,同时保持了原文的整体含义和本质。对特发性自闭症患者神经细胞的研究表明,其增殖和网络发生了改变(Marchetto 等人,2017 年)。此外,研究发现,自闭症谱系障碍中存在 FOXG1 依赖的 GABA/谷氨酸神经元分化失调(Mariani 等人,2015 年)。此外,病理性启动与自闭症受试者衍生神经元的发育基因网络异时性有关(Schafer 等人,2019 年)。遗传学研究已确定了与自闭症有关的几个关键基因,包括 PTEN,它调节小鼠的神经元树突和社交互动(Kwon 等人,2006 年)。破坏性 CHD8 突变也已被证明可在发育早期定义自闭症亚型(Bernier 等人,2014 年)。已经研究了来自自闭症谱系障碍遗传模型的人类诱导多能干细胞衍生神经元的细胞表型,揭示了与典型对照细胞相比的细胞差异(Deshpande 等人,2017 年)。在 16p11.2 缺失和重复变异的携带者中也发现了相反的大脑差异(Qureshi 等人,2014 年)。研究探索了小鼠大脑皮层上层神经元与自闭症样特征之间的关系,揭示了这些神经元的过量生产导致自闭症行为(Fang 等人,2014 年)。改变的大脑皮层基因表达、大脑过度生长和功能过度连接也与小鼠的 Chd8 单倍体不足有关(Suetterlin 等人,2018 年)。对发育突触修剪的研究揭示了 LTD 样分子通路在此过程中的作用,对自闭症研究具有潜在意义(Piochon 等人,2016 年)。局部皮质回路的关键期可塑性也得到了探索,强调了这一时间窗口对大脑正常发育和功能的重要性(Hensch,2005)。已发现导致综合征性自闭症的突变定义了突触病理生理学轴,这对我们理解自闭症的潜在机制具有重要意义(Auerbach 等人,2011)。研究人员发现,综合征性和非综合征性自闭症啮齿动物模型中存在共同的突触病理生理学。研究还表明,在携带与自闭症相关的拷贝数变异的小鼠中,小脑可塑性和运动学习能力受损。此外,有自闭症风险的婴儿的白质微结构发生了改变,表明早期大脑发育发生了变化。已发现脑脊液 (CSF) 在神经祖细胞增殖中起着至关重要的作用,可能参与自闭症的早期大脑发育。 CSF 还提供了清除间质溶质(包括淀粉样蛋白 β)的途径。髓鞘形成缺陷在综合征型和特发性自闭症谱系障碍 (ASD) 中很常见。Pten 的体质性错误定位与少突胶质细胞的早熟和 ASD 模型中的异常髓鞘形成有关。前额叶轴突的变化可能会破坏自闭症中的网络,表明连接性发生了改变。活动依赖性髓鞘形成和髓鞘形成神经胶质细胞上的非突触连接促进电活性轴突的优先髓鞘形成。最后,几项研究已经确定了自闭症谱系障碍 (ASD) 的常见遗传风险变异,强调了了解这种疾病背后的复杂遗传学的重要性。这一系列参考文献涉及自闭症谱系障碍 (ASD) 及其早期检测和预测。这些论文探讨了各个方面,包括:* ASD 的生物学,从细胞增殖到临床表型 * 父母的担忧可以预测以后的自闭症诊断 * 18 个月的标记可以预测自闭症儿童的弟弟妹妹以后的结果 * 幼儿自闭症的筛查工具 * 对疑似患有自闭症的幼儿的临床评估和管理 * 使用深度学习和机器学习算法研究精神和神经疾病(包括自闭症)的神经影像相关性 此外,参考文献还涉及: * 深度学习在婴儿脑部 MRI 分析中的作用 * 解决不平衡数据集和改进预测模型的技术 * 从出生到婴儿期自闭症患者的大脑和行为发展 * 预测是人类认知神经科学对人道主义和务实应用的贡献 * 跟踪精神病的维度和分类特征的个体特定功能连接标记 总体而言,这些参考文献为自闭症的早期发现和预测以及机器学习和深度学习算法在该领域的应用提供了见解。最近的研究探索了精神神经影像学在临床环境中的应用,即心理放射学。该领域已显示出利用磁共振成像 (MRI) 和放射组学分析检测精神分裂症和注意力缺陷多动障碍 (ADHD) 的前景。具体而言,研究重点是通过分析大脑图像和基于图形的指标来提高 ADHD 的诊断准确性。研究还检验了对患有自闭症谱系障碍的幼儿进行早期干预的有效性,包括父母介导的疗法和行为干预。此外,人们对精准医疗的兴趣日益浓厚,精准医疗旨在根据患者独特的基因特征为其量身定制治疗方案。另一个研究领域涉及了解自闭症的神经相关性,一些研究表明,出生时的白质连接组可以预测成年后的认知能力。此外,脑成像和机器学习的进步使研究人员能够开发出分析大脑网络和预测神经发育结果的新工具。这些发现对一系列神经和精神疾病的早期诊断、治疗和干预策略具有潜在意义。提到的一些关键研究包括:* Lei 等人。 (2019):研究了全脑图像、全连接组功能连接和基于图形的指标在检测精神分裂症方面的相对诊断价值。 * Port JD (2018):提出使用 MRI 成像和放射组学分析来诊断 ADHD。 * Collins & Varmus (2015):提出了一项关于精准医疗的新举措。 * Dawson 等人 (2010):对患有自闭症的幼儿进行了一项早期干预的随机对照试验,称为早期丹佛模式。 * Kasari 等人 (2015):评估了家长干预对自闭症幼儿的比较效果。这些研究表明,我们正在不断努力提高对精神神经影像学及其在临床环境中的应用的理解。以下文章讨论了自闭症谱系障碍 (ASD) 研究的各个方面,包括诊断、认知特征、大脑功能和遗传因素。这些研究探讨了理解 ASD 的不同方法,例如使用机器学习算法来识别认知特征的亚型,分析静息状态功能网络来识别大脑系统的个体特定特征。文章还讨论了考虑 ASD 异质性的重要性,一些研究侧重于父母认知和行为特征在塑造临床变异性方面的作用。其他研究则探讨了早期运动迟缓与后来诊断 ASD 或表达性语言困难之间的关系。这项研究强调了精准医疗方法的必要性,以了解 ASD 的复杂原因,重点是开发更有效的诊断工具和治疗方法。研究表明,常见的遗传变异、多基因风险和罕见基因突变的附加效应都会增加患 ASD 的风险。 2012 年和 2016 年的两篇研究论文研究了有自闭症风险的婴儿的沟通延迟。这些研究发现,早期运动技能可以预测自闭症谱系障碍儿童的语言发育。2019 年发表的另一项研究讨论了基于干细胞的脑器官的出现,这可能有助于理解发育障碍。日本的一系列病例使用视频脑电图监测研究了四名 8 至 14 个月大婴儿的颤抖发作 (SA)。发作的特征是凝视、紧张和颤抖,通常在清醒时成群发生,没有意识障碍。不寻常的动作包括罕见的眼球反张姿势和眼球偏斜。这些发作通常由换尿布或喂食时间引发,在 2-3 岁时会消退或显着改善。颤抖发作可能会被误诊为癫痫;然而,在大多数情况下,它们被认为是一种可以消退的良性疾病。另一种需要考虑的情况是由于镁营养缺乏导致的婴儿震颤综合征,这种综合征会导致快速震颤,在睡眠期间会消失,需要镁治疗,但可能无法纠正精神运动发育迟缓。这些研究探讨了理解自闭症的不同方法,例如使用机器学习算法来识别认知特征的亚型,分析静息状态功能网络来识别大脑系统的个体特定特征。文章还讨论了考虑自闭症异质性的重要性,一些研究侧重于父母的认知和行为特征在塑造临床变异性方面的作用。另一些研究则探讨了早期运动迟缓与后来诊断自闭症或表达性语言困难之间的关系。这项研究强调了精准医疗方法的必要性,以了解自闭症的复杂病因,重点是开发更有效的诊断工具和治疗方法。研究表明,常见的遗传变异、多基因风险和罕见基因突变的附加效应都会增加患自闭症的风险。2012 年和 2016 年的两篇研究论文研究了有自闭症风险的婴儿的沟通延迟。这些研究发现,早期运动技能可以预测自闭症谱系障碍儿童的语言发展。2019 年发表的另一项研究讨论了基于干细胞的脑类器官的出现,这可能有助于了解发育障碍。日本的一系列病例使用视频脑电图监测研究了 4 名 8 至 14 个月大婴儿的颤抖发作 (SA)。发作的特征是凝视、紧张和颤抖,通常在清醒时成群发生,没有意识障碍。异常动作包括罕见的反张姿势和眼球偏斜。发作通常由换尿布或喂奶时间引发,在 2-3 岁时会消退或显着改善。颤抖发作可能被误诊为癫痫;然而,在大多数情况下,它们被认为是一种良性疾病,可以得到解决。另一种需要考虑的疾病是由于镁营养缺乏引起的婴儿震颤综合征,它会导致快速震颤,在睡眠中消失,需要镁治疗,但可能无法纠正精神运动发育迟缓。这些研究探讨了理解自闭症的不同方法,例如使用机器学习算法来识别认知特征的亚型,分析静息状态功能网络来识别大脑系统的个体特定特征。文章还讨论了考虑自闭症异质性的重要性,一些研究侧重于父母的认知和行为特征在塑造临床变异性方面的作用。另一些研究则探讨了早期运动迟缓与后来诊断自闭症或表达性语言困难之间的关系。这项研究强调了精准医疗方法的必要性,以了解自闭症的复杂病因,重点是开发更有效的诊断工具和治疗方法。研究表明,常见的遗传变异、多基因风险和罕见基因突变的附加效应都会增加患自闭症的风险。2012 年和 2016 年的两篇研究论文研究了有自闭症风险的婴儿的沟通延迟。这些研究发现,早期运动技能可以预测自闭症谱系障碍儿童的语言发展。2019 年发表的另一项研究讨论了基于干细胞的脑类器官的出现,这可能有助于了解发育障碍。日本的一系列病例使用视频脑电图监测研究了 4 名 8 至 14 个月大婴儿的颤抖发作 (SA)。发作的特征是凝视、紧张和颤抖,通常在清醒时成群发生,没有意识障碍。异常动作包括罕见的反张姿势和眼球偏斜。发作通常由换尿布或喂奶时间引发,在 2-3 岁时会消退或显着改善。颤抖发作可能被误诊为癫痫;然而,在大多数情况下,它们被认为是一种良性疾病,可以得到解决。另一种需要考虑的疾病是由于镁营养缺乏引起的婴儿震颤综合征,它会导致快速震颤,在睡眠中消失,需要镁治疗,但可能无法纠正精神运动发育迟缓。以及罕见基因突变的附加效应都会增加患自闭症的风险。2012 年和 2016 年的两篇研究论文研究了有自闭症风险的婴儿的沟通延迟。这些研究发现,早期运动技能可以预测自闭症谱系障碍儿童的语言发展。2019 年发表的另一项研究讨论了基于干细胞的脑器官的出现,这可能有助于理解发育障碍。日本的一系列病例使用视频脑电图监测研究了四名 8 至 14 个月大婴儿的颤抖发作 (SA)。发作的特征是凝视、紧张和颤抖,通常在清醒时成群发生,没有意识障碍。不寻常的动作包括罕见的反张姿势和眼球偏斜。这些发作通常由换尿布或喂食时间引发,在 2-3 岁时会消退或显着改善。颤抖发作可能会被误诊为癫痫;然而,在大多数情况下,它们被认为是一种良性疾病,可以得到解决。另一种需要考虑的情况是由于镁营养缺乏导致的婴儿震颤综合征,这种综合征会导致快速震颤,在睡眠期间会消失,需要镁治疗,但可能无法纠正精神运动发育迟缓。以及罕见基因突变的附加效应都会增加患自闭症的风险。2012 年和 2016 年的两篇研究论文研究了有自闭症风险的婴儿的沟通延迟。这些研究发现,早期运动技能可以预测自闭症谱系障碍儿童的语言发展。2019 年发表的另一项研究讨论了基于干细胞的脑器官的出现,这可能有助于理解发育障碍。日本的一系列病例使用视频脑电图监测研究了四名 8 至 14 个月大婴儿的颤抖发作 (SA)。发作的特征是凝视、紧张和颤抖,通常在清醒时成群发生,没有意识障碍。不寻常的动作包括罕见的反张姿势和眼球偏斜。这些发作通常由换尿布或喂食时间引发,在 2-3 岁时会消退或显着改善。颤抖发作可能会被误诊为癫痫;然而,在大多数情况下,它们被认为是一种良性疾病,可以得到解决。另一种需要考虑的情况是由于镁营养缺乏导致的婴儿震颤综合征,这种综合征会导致快速震颤,在睡眠期间会消失,需要镁治疗,但可能无法纠正精神运动发育迟缓。
美国国家医学图书馆 (NLM) 提供科学文献的访问权限,但不认可或同意其内容。相反,交叉污染对食品安全构成重大风险,需要有效的清洁和消毒方案,这些方案需要通过表面采样协议进行验证、监控和验证。单独使用视觉评估是无效的,但可以作为监测表面残留污染的综合方法的一部分。微生物和非微生物检测方法在检测表面污染方面的有效性进行了比较。非微生物评估方法(例如 ATP 测试)可有效监测残留的表面污垢,而传统的微生物方法可以指示残留的微生物污染,但不能指示表面污垢。分子微生物方法和生物发光测试的最新进展提供了改进的检测能力。没有单一的理想表面测试方法;采样方法应考虑指导方针、综合策略和趋势分析。清洁对于去除表面的“污垢”和保持各种环境中的清洁至关重要。人类的接受度和消费者行为在确定清洁标准方面起着重要作用。清洁的环境对于预防疾病至关重要,肮脏的环境会促进病原体的传播。在食品行业,充分清洁对于防止交叉污染至关重要,尤其是对于即食食品。然而,人类食物过敏原或食物腐败生物的痕迹也可能带来健康风险并影响产品的保质期,这凸显了有效的清洁实践在保持清洁和安全标准方面的重要性。食品生产场所的清洁:法律和财务要求食品生产场所的环境监测是确保食品质量和安全的一个重要方面。虽然食品加工商可能会进行环境采样,但一些州和国家为执法人员提供了如何有效开展此项活动的指南。适当的清洁不仅对于保持食品卫生至关重要,而且出于财务原因也至关重要。清洁不充分会导致设备故障、效率降低和成本增加。清洁通常是一项立法要求,欧盟在其关于食品卫生的法规 (EC No. 852/2004) 中对此进行了规定。英国零售商协会的全球食品安全标准规定了食品安全的最低标准,包括清洁和清洁程序的要求。该标准强调了评估清洁效果、定义可接受和不可接受的清洁度水平以及记录结果的重要性。不符合这些标准可能会给食品制造商带来重大经济损失。除了财务影响外,清洁不当也会导致食品接触表面微生物的生长。这些微生物对环境压力表现出各种生理和遗传反应,使它们能够在非理想条件下生存。微生物滋生的因素包括它们能够产生应激反应并形成难以去除的生物膜。总体而言,保持食品生产场所清洁是确保食品安全和质量的关键方面。这对于遵守监管要求至关重要,并且可能对食品制造商产生重大的财务影响。监测清洁计划的重要性在于检测微生物、有机残留物或两者,这些物质可能存在于受污染的设备和环境表面上。与细菌、酵母和霉菌不同,病毒是专性细胞内寄生虫,只能在活细胞内生长,但可以在宿主外存活数天或数月,形成潜在的感染源。交叉污染是一个重要的风险因素,与高达 38% 的疫情有关,但其实际影响可能被低估。为了防止交叉污染,必须整合食品安全管理实践,包括场所设计、个人卫生和清洁。研究通过对食品处理活动和疫情病例的观察性研究,表明了预防交叉污染的重要性。案例研究 1 来自一家瑞士三明治工厂,在环境拭子和产品中发现了单核细胞增生李斯特菌,这凸显了需要进行环境监测以识别潜在的污染问题。清洁计划的修订解决了这个问题,强调了此类措施的重要性。案例研究 2 来自一家美国乳制品厂,在产品样本和环境拭子中发现了单核细胞增生李斯特菌,表明受污染的设备如何导致交叉污染。交叉污染是导致新兴病原体患病的关键因素,其中许多病原体的感染剂量较低。交叉污染的严重程度因病原体而异,一些病原体如 STEC 和弯曲杆菌的影响为中度至重度。间接交叉污染涉及一系列复杂的步骤,包括手、设备和表面,这说明需要全面的食品安全管理实践。必须认识到,表面采样和交叉污染不仅限于较潮湿的食品加工环境,而是广泛适用于不同的环境。巧克力、花生酱或干面条等低风险食品与食源性疾病爆发有关(Kornacki,2006 年)。在干燥的食品加工环境中,检测环境表面是否存在沙门氏菌或阪崎克罗诺杆菌以及酵母和霉菌等病原体至关重要(Kornacki,2006 年)。在屠宰场,手部接触表面通常受到严重污染,除非将高风险区域和低风险区域分开,否则将存在交叉污染的风险。这可能导致即食食品受到污染。企业被鼓励采用基于风险的方法来评估交叉污染,但这仍然是风险评估中的致命弱点(Griffith 和 Redmond,2005 年)。有效的清洁管理对于减少交叉污染的机会至关重要,但清洁计划中经常忽略手部接触表面(Griffith 和 Redmond,2005 年)。环境病原体污染食物的可能性约为 70%,其中单核细胞增生李斯特菌尤其令人担忧。楼层图/地图可以帮助评估潜在的交叉污染风险,并且是 BRC(2015 年)等标准所要求的。清洁管理的战略方法包括设计、建造和维护设备和场所,以消除难以清洁的区域,最大限度地减少交叉污染的机会,并确保有效的清洁规程。然而,如果没有合规文化和高级管理层的承诺,单靠规程是不会成功的(Griffith,2014 年)。清洁方法的实施是 BRC 等认证标准的一项关键要求,通常基于标准操作程序 (SOP)。清洁文件通常包括政策声明、时间表、程序、详细说明和记录表。越来越多的软件工具被用于支持该过程。审计员经常要求访问清洁计划、结果和从监控中获得的趋势。清洁方案必须是最新的,并且是记录控制系统的一部分,全面涵盖清洁设备和材料。必须认识到,清洁不能消除所有污垢,这对设备、水等材料有影响。未能正确维护清洁设备会导致交叉污染。一项研究发现,附着在清洁工具上的杆状菌和球菌在基因上与从相关食品中分离出来的杆状菌和球菌相同。清洁程序中的典型阶段包括:1. 预清洁 - 去除松散的食物或污垢、刮擦、吸尘等。2. 主清洁 - 去除更牢固地粘附的食物残渣、油脂或污垢3. 冲洗 - 去除清洁剂和乳化/溶解的污垢和油脂其他阶段可能包括消毒选项,以将残留的表面微生物数量降低到较低或可接受的水平。但是,消毒后是否需要冲洗尚有争议,有些指令允许在不存在可能对食品、人员或设备产生不利影响的残留化学物质的情况下将其作为一种选择。杀菌剂的耐药性是一个问题,但必须与可用水的质量、再污染的风险以及保持干燥加工环境的需要相平衡。在美国,消毒剂已为非冲洗应用设定了限制,并在较高水平使用它们,然后冲洗,可以帮助确保表面计数在可接受的范围内。一些处理器还使用额外的“终端消毒”阶段,例如臭氧或过氧化氢蒸汽,这可以在分解前提供额外的杀灭作用。然而,使用这些方法的决定取决于清洁化学品、水质、产品类型和风险水平等因素。全面的清洁实施方法至关重要,包括结合清洁和消毒方案,这些方案通过功效测试或表面采样进行验证和验证。例行审计也可以提供关于清洁效果的宝贵见解。没有单一的“理想”方法来评估清洁和消毒效果,因为所选方法必须考虑潜在表面污染、要控制的危害和所需的清洁度水平等因素。清洁表面的理想方法应该足够灵敏,能够在湿润和干燥的表面上有效工作,具有良好的可重复性和易用性。它还应该快速、便宜、万无一失,以便进行准确的趋势分析。该过程涉及去除有机残留物,例如食物残渣和过敏原,这有助于减少微生物生长并为消毒表面做好准备。低残留微生物数量对于防止食品污染和变质至关重要。清洁表面上是否存在水分会显著影响交叉污染的预防。表面之间的转移率可能有很大差异,并且会因水分而增加,但必须小心干燥以避免再次污染。存在各种方法来评估清洁和消毒的效果,包括目测评估、微生物拭子和快速非微生物化学检测方法,如 ATP 测试。这些较新的测试通过检测污垢而不是微生物来提供更真实的清洁度评估,提供主动的清洁度管理,并及时提供结果以采取纠正措施。在评估表面清洁度方面,微生物和非微生物方法各有优缺点。非微生物方法主要关注残留的有机表面碎片,但也可以通过 ATP 测试检测微生物污染,ATP 测试可以识别低至 104 CFU/mL 的细菌。然而,这些测试不考虑病毒或细菌孢子。微生物学方法仅提供残留表面生物数量的快照,而不表明表面有机污染的程度。食品环境中的表面微生物计数和 ATP 读数之间不太可能存在直接相关性,可能被认为是巧合,因此不可靠。清洁的有效性不能仅由这些方法确定,因为它们没有考虑产品残留物或不同类型的食品污染等各种因素。例如,ATP 含量高的食物可能微生物数量低,而生食可能 ATP 增加相对较低,但微生物数量增加较多。最近,ATP 技术已与评估酸性磷酸酶(一种在生肉和家禽中发现的酶)联系起来。这种方法涉及使表面拭子反应 2 或 5 分钟,光发射越多表示表面越不干净。本章旨在进一步回顾这些方法,以确保通过综合的表面采样计划保持适当且具有成本效益的清洁实践。人们已经探索在清洁前将染料应用于表面作为检测安全或感官问题的一种手段,尽管其在非食品接触区域的有效性尚不确定。一种简单的方法是将透明胶带贴在表面上,然后可以在移除后在光学显微镜下检查。已经开发了更先进的技术,例如荧光和共聚焦扫描激光显微镜,但对于食品企业的日常使用来说并不实用。另一种方法利用 ATP 生物发光测定来评估表面清洁度。酶-底物复合物荧光素-荧光素酶将与 ATP 相关的化学能转化为光,发射的光量与表面上的 ATP 量成正比,因此与表面的清洁度成正比。该方法以相对光单位 (RLU) 测量光,并需要代表可接受清洁值的基线数据。光度计的功能各不相同,有些型号除了标准检测外还提供一系列其他测试。一些光度计使用光电倍增管,而另一些则使用基于光电二极管的系统。每种方法都有其优点和缺点。光电二极管仪器通常更实惠且更坚固,但可能会影响测试灵敏度。为了缓解这种情况,制造商可以调整其试剂、配置或包装中使用的化学成分。选择光度计时,必须同时考虑仪器性能和测试化学成分(线性、灵敏度、重复性和准确性)。有各种报告和建议可帮助您做出明智的决定。许多较新的型号都配备了趋势分析软件,可以帮助跟踪不同地点和工厂随时间变化的数据。一些制造商通过将测试探针和设施集成到光度计中来提供 pH 和温度测量等附加功能。但是,如果设备出现故障,这些增强功能可能会带来复杂性和潜在问题。最终,仪器与其设计的测试相结合的性能对于确定适用性至关重要。大多数制造商提供校准和正/负控制以确保准确性。分析测试的简化使非技术人员能够使用简单的一体化分析进行测试。然而,这些检测中使用的化学配方在不同供应商之间可能存在很大差异,从而影响保质期和储存要求。ATP 水平会因食品类型和加工方式而有很大波动。高度加工的食品通常含有少量 ATP,而西红柿等新鲜食品的 ATP 浓度可能较高。在消毒过程中使用的清洁剂会影响测试结果,因此在测试前冲洗设备至关重要。不同制造商的仪器灵敏度各不相同,有些制造商的灵敏度高于其他制造商。ATP 测试的理想灵敏度水平仍是一个争论话题,讨论的重点是寻找检测低水平和避免过度灵敏度之间的平衡。清洁度标准因企业内的特定表面和区域而异,例如无菌灌装产品与排水管中的表面和区域。制造商提供了清洁度指南,但通常最好由食品企业自己决定,以指导持续改进工作。一种称为 ATP 生物发光的技术已被开发出来用于测量清洁度,一些制造商已采用这种方法来检测低至 0.1-5 ppm 的过敏原残留物。随着 ATP 生物发光的发展,其他针对各种成分(如蛋白质、糖和 NAD)的化学检测方法已被研究作为快速清洁测试。这些测试通常在几分钟内产生单色最终产品,可以用廉价的样品仪器进行目视评估或记录。这些测试的灵敏度各不相同,因此有些测试比其他测试更适合食品企业。使用快速化学测试时要考虑的因素包括测试的普遍性、灵敏度、成本、结果所需时间、简单性和记录能力。每个食品企业必须根据其具体情况和生产的食品类型选择最合适的测试。蛋白质检测方法在检测高蛋白食品(如家禽或乳制品)方面具有潜力,并且在检测过敏原方面也具有特殊用途,因为许多重要的食品过敏原本质上都是蛋白质。给出文章文本这里使用拭子测试检测食品表面的微生物可以提供有关污染程度和病原体存在的宝贵见解。这些测试可以检测蛋白质残留物,这表明有机污染,灵敏度水平从 1 到 10 µg 不等。产生的颜色强度与污染程度直接相关,尽管结果通常以通过/未通过的形式呈现。另一种广泛使用的测试检测 NAD,这是一种化学残留物,可以衡量有机污染。其他基于拭子的测试可以检测低至 2.5 µmol 的葡萄糖或葡萄糖和乳糖。葡萄糖通常存在于食物残渣中,而乳糖测定对乳制品行业特别有用。然而,这些快速化学检测有局限性,包括灵敏度低于同等的 ATP 检测。阴性结果不能用来排除微生物的存在。微生物表面采样的历史悠久,可以追溯到 20 世纪二三十年代。早期的方法基于擦拭,后来开发了直接琼脂接触法。然而,分子方法在未来可能会变得更加普遍。食品工业中使用的主要微生物学方法包括使用拭子、海绵或抹布从表面回收生物,然后在营养培养基上培养。这些测试可用于估计存在的一般或指示生物的残留数量,从而提供清洁效果的证据。指示生物可以反映表面微生物的质量并指示潜在的风险。病原体检测是一种独特的方法,涉及检测可能对公共健康构成风险的特定病原体,例如单核细胞增生李斯特菌。这种类型的测试需要不同的理念方法,并且通常与其他方法结合使用。在检测病原体时,通常需要检查更大的表面面积,而不仅仅是一小部分。所用的介质可以是固体、液体或半固体,通常用拭子接种。要确定病原体是否存在,必须测试足够大的表面面积。如果要寻找清洁度,则应擦拭特定区域,而如果要寻找病原体,则应测试更大的区域。在微生物检测中,回收效率 (RE) 起着至关重要的作用,并且可能因所用方法、微生物类型和测试表面而异。接触板和浸片等接触方法更易于使用,并且可以提供更好的结果,如两次大规模比较所示,尽管差异并不总是很大。然而,所有培养方法都有其挑战,特别是从培养表面去除生物。为了克服这个问题,人们使用了“冲洗”表面,其中冲洗液被用作微生物的来源。最近,人们尝试使用超声波去除表面微生物,尤其是生物膜中的微生物,这引发了人们对回收数量与产品污染的有效性和重要性的质疑。微生物方法的选择取决于所需的具体信息和当前的情况,拭子法被广泛使用,但也有其局限性和缺点。接触板和浸片比拭子法具有更好的可重复性,但也有其自身的挑战和要求。所需的最低限度的培养设施便携式装置可以测试用螺帽密封的冲洗水,保质期长 桨叶带铰链,更易于在平面上使用 只有运动生物才能覆盖琼脂表面 需要培养和灭菌处理设施 表面可能有琼脂残留 无法估计产生可数菌落的表面种群 存在可存活但不可培养 (VBNC) 细菌的风险 擦拭方法仍然是最古老且广泛用于表面监测 擦拭技术的变化会影响结果 回收率低,特别是在低表面种群密度下 缺乏可靠性、可重复性和再现性 有各种标准方法可用,包括 ISO 18593:2004 关于最佳擦拭方案及其对回收率的影响的基本信息仍然缺乏。回收率可看作是从表面去除微生物、在样品采集过程中释放微生物以及随后生长潜力的函数。实际回收率差异很大,从 0.1% 到 25% 不等,具体取决于所采用的技术。拭子类型、表面类型和微生物类型等因素会极大地影响回收率。微生物一旦附着在表面,尤其是生物膜上,就会变得越来越难以去除。此外,由于微生物滞留在芽纤维内,可重复性和灵敏度较差。改进流程一个方面的技术可能会对另一个方面产生负面影响,需要在不同组件之间进行权衡或妥协。缺乏标准化可能使解释单个环境拭子的结果变得困难,可能会导致对清洁效果产生错误的印象。拭子最适合使用多个测试结果来确定随时间推移的性能趋势。了解回收率的问题有助于改进和控制流程。用于保持等渗条件和减少生理压力的采样溶液可用于在运输过程中保持微生物的活力。选择这些溶液时需要小心,通过提供生长培养基来防止人为夸大计数。一些表面可能仍有残留消毒剂,需要中和剂。理想情况下,拭子应及时处理;然而,这通常是不切实际的。与实时分析相比,低温非冷冻运输可以最大限度地减少差异。在解释结果时,可以识别和考虑与常态有显著偏差的结果。需要考虑时间和润湿剂等因素,并针对特定病原体进行优化。应适当选择预富集培养基,但需要考虑非病原体的过度生长。一些制造商在其润湿溶液中添加表面活性剂,以提高从测试表面的“拾取”,这可以人为地增加菌落计数。由于担心拭子芽无法释放回收的微生物,一家制造商开发了一种新型拭子,这种拭子可以释放更多的微生物,从而实现更好的整体回收。另一种方法是使用真空细菌收集系统,这样无需拭子即可进行更大的表面评估。另一种方法是将独立的“一体化培养基和卫生拭子”放入试管中,以更快的速度获得结果。拭子在测试表面后返回到含有琼脂和指示剂系统的培养管中,使微生物生长并通过颜色变化检测其存在。不干净的表面可以在 12 小时内检测出阳性,具体取决于微生物污染水平。使用非特异性培养基可获得一般需氧菌落计数,而选择性或富集培养基则用于特定病原体或指示剂。指示剂系统基于显色、荧光或生物发光检测原理,可在 18 小时内检测出相关微生物。最近,将培养与生物发光测试相结合,可将严重污染表面的检测时间缩短至 1 小时,轻度污染表面的检测时间缩短至 8 小时。生物发光测试可用于大肠菌群、肠杆菌科、大肠杆菌和李斯特菌,从而可以在进一步生产食品之前迅速采取纠正措施。在 ATP 测定中使用光度计将其功能扩展到了传统的估计表面残留物中 ATP 的方法之外。海绵的工作原理与擦拭类似,即从表面去除微生物,释放它们,然后培养它们进行分析。恢复过程包括用压缩的无菌海绵擦拭测试表面,测试表面可能已预先润湿或需要润湿剂。为了避免污染,通常使用无菌手套握住海绵。接种后,将海绵密封在无菌信封中并运送到实验室,在那里搅拌并计数释放的生物。海绵在放回富集培养基中时,对病原体检测具有更高的灵敏度,并且不受附着在其基质上的微生物的影响。一些海绵的表面积比传统拭子大,因此可以测试更大的表面并施加更大的压力。变化包括法国用于擦拭表面的棍棒海绵和纱布。研究还表明,静电擦拭布的性能优于传统拭子(Lutz 等人,2013 年)。其他直接琼脂接触方法,称为“印刷方法”,涉及将无菌琼脂压在要采样的表面上。琼脂吸收微生物,然后繁殖并形成孵育后可见的菌落。这种方法最适合光滑、平坦的表面,并且琼脂的分散方式有所不同。可以使用各种方法计数微生物,包括接触板和浸片。这些工具还可用于计数食物、水或冲洗水中的液体样本中的生物。最近,已经开发出一种混合平板/浸片,用于测试不规则形状的表面。其他变化包括使用 Petrifilm 代替传统的琼脂平板进行培养。Petrifilm 是涂有营养物质和胶凝剂的薄膜,可以用 1 毫升去离子水重新水化以提供表面计数。还发现一种新型滚筒采样器比传统接触平板的产量更高。直接琼脂接触法有几个优点,包括易于使用、成本更低、回收率和可重复性更好。然而,它们更适合平坦表面,在可能出现过度生长的非常污染的表面上可能会出现问题。这会使统计分析变得具有挑战性。尽管如此,这种方法适用于指示清洁充分性,而不是提供精确的计数。与直接琼脂接触法相比,分子方法速度更快、灵敏度更高、特异性更强。这些技术使用基于 DNA 或 RNA 的扩增方法(如 PCR、RT-PCR 和 NASBA)来针对微生物核酸的特定部分。实时 PCR 可以同时进行扩增和检测。虽然分子方法可用于检测微生物,但它们无法区分活体生物和非感染性核酸,仅表明生物在某个阶段存在。分子方法需要技术专长和高成本设备,使其更适合于爆发调查或追踪工厂内的微生物。然而,协议的进步可能会导致它们在未来更多地用于评估消毒效果或估计微生物种群。清洁度风险评估需要了解生物数量和定量实时 PCR (qPCR) 等分子技术。一项研究比较了表面培养和 qPCR,但只测试了一个生物。培养产生的活细胞很少,而 qPCR 显示出更高的结果,包括非活细胞。可能需要对样品进行预处理,这会增加成本和时间。起诉通常依赖于视觉评估,除此之外没有清洁度的法律标准。然而,已经提出了一些指导方针,这些指导方针的推导方式各不相同,并且基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些建议的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或Petrifilm 是涂有营养物质和胶凝剂的薄膜,可用 1 mL 去离子水重新水化以提供表面计数。还发现一种新型滚轮采样器比传统接触板的产量更高。直接琼脂接触法有几个优点,包括易于使用、成本更低、回收率和可重复性更好。然而,它们更适合平坦表面,在可能过度生长的污染严重的表面上可能会出现问题。这会使统计分析变得具有挑战性。尽管如此,这种方法适用于指示清洁充分性,而不是提供精确计数。与直接琼脂接触法相比,分子方法速度更快、灵敏度更高、特异性更强。这些技术使用基于 DNA 或 RNA 的扩增方法(如 PCR、RT-PCR 和 NASBA)来靶向微生物核酸的特定部分。实时 PCR 可以同时进行扩增和检测。虽然分子方法可用于检测微生物,但它们不能区分活体生物和非感染性核酸,只能表明该生物在某个阶段存在。分子方法需要技术专长和高成本设备,因此更适合用于调查疫情或追踪工厂内的微生物。然而,协议的进步可能会导致它们在未来更多地用于评估消毒效果或估计微生物种群。清洁度风险评估需要了解生物数量和定量实时 PCR (qPCR) 等分子技术。一项研究比较了表面培养和 qPCR,但只测试了一种生物。培养产生的活细胞很少,而 qPCR 显示的结果更高,包括非活细胞。可能需要对样品进行预处理,这会增加成本和时间。起诉通常依赖于视觉评估,除此之外没有其他清洁度的法律标准。然而,已经提出了一些指导方针,其推导方式各不相同,基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些推荐的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或Petrifilm 是涂有营养物质和胶凝剂的薄膜,可用 1 mL 去离子水重新水化以提供表面计数。还发现一种新型滚轮采样器比传统接触板的产量更高。直接琼脂接触法有几个优点,包括易于使用、成本更低、回收率和可重复性更好。然而,它们更适合平坦表面,在可能过度生长的污染严重的表面上可能会出现问题。这会使统计分析变得具有挑战性。尽管如此,这种方法适用于指示清洁充分性,而不是提供精确计数。与直接琼脂接触法相比,分子方法速度更快、灵敏度更高、特异性更强。这些技术使用基于 DNA 或 RNA 的扩增方法(如 PCR、RT-PCR 和 NASBA)来靶向微生物核酸的特定部分。实时 PCR 可以同时进行扩增和检测。虽然分子方法可用于检测微生物,但它们不能区分活体生物和非感染性核酸,只能表明该生物在某个阶段存在。分子方法需要技术专长和高成本设备,因此更适合用于调查疫情或追踪工厂内的微生物。然而,协议的进步可能会导致它们在未来更多地用于评估消毒效果或估计微生物种群。清洁度风险评估需要了解生物数量和定量实时 PCR (qPCR) 等分子技术。一项研究比较了表面培养和 qPCR,但只测试了一种生物。培养产生的活细胞很少,而 qPCR 显示的结果更高,包括非活细胞。可能需要对样品进行预处理,这会增加成本和时间。起诉通常依赖于视觉评估,除此之外没有其他清洁度的法律标准。然而,已经提出了一些指导方针,其推导方式各不相同,基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些推荐的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或与直接琼脂接触法相比,分子方法速度更快、灵敏度更高、特异性更强。这些技术使用基于 DNA 或 RNA 的扩增方法(如 PCR、RT-PCR 和 NASBA)来靶向微生物核酸的特定部分。实时 PCR 可同时进行扩增和检测。虽然分子方法可用于检测微生物,但它们无法区分活体生物和非感染性核酸,仅表明生物在某个阶段存在。分子方法需要技术专业知识和高成本设备,因此更适合用于调查疫情或追踪工厂内的微生物。然而,协议的进步可能会导致它们在未来更多地用于评估消毒效果或估计微生物种群。清洁度风险评估需要了解生物数量和定量实时 PCR (qPCR) 等分子技术。一项研究比较了表面培养和 qPCR,但只测试了一种生物。培养产生的活细胞很少,而 qPCR 显示的结果更高,包括非活细胞。可能需要对样品进行预处理,这会增加成本和时间。起诉通常依赖于视觉评估,除此之外没有其他清洁度的法律标准。然而,已经提出了一些指导方针,这些指导方针的推导各不相同,并且基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些建议的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或与直接琼脂接触法相比,分子方法速度更快、灵敏度更高、特异性更强。这些技术使用基于 DNA 或 RNA 的扩增方法(如 PCR、RT-PCR 和 NASBA)来靶向微生物核酸的特定部分。实时 PCR 可同时进行扩增和检测。虽然分子方法可用于检测微生物,但它们无法区分活体生物和非感染性核酸,仅表明生物在某个阶段存在。分子方法需要技术专业知识和高成本设备,因此更适合用于调查疫情或追踪工厂内的微生物。然而,协议的进步可能会导致它们在未来更多地用于评估消毒效果或估计微生物种群。清洁度风险评估需要了解生物数量和定量实时 PCR (qPCR) 等分子技术。一项研究比较了表面培养和 qPCR,但只测试了一种生物。培养产生的活细胞很少,而 qPCR 显示的结果更高,包括非活细胞。可能需要对样品进行预处理,这会增加成本和时间。起诉通常依赖于视觉评估,除此之外没有其他清洁度的法律标准。然而,已经提出了一些指导方针,这些指导方针的推导各不相同,并且基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些建议的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或除了这个标准之外,没有其他清洁度的法律标准。但是,已经提出了一些指导方针,这些指导方针的推导方式各不相同,并且基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些建议的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或除了这个标准之外,没有其他清洁度的法律标准。但是,已经提出了一些指导方针,这些指导方针的推导方式各不相同,并且基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些建议的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或
nlm提供了对科学文献的访问,而无需暗示与内容的认可或一致。分类法涉及根据特征对微生物进行分类,细菌通过革兰氏染色反应分为两个主要组,并表现出各种形状和大小。在临床实践中,细菌是通过形态学,氧的需求和生化测试对细菌进行分类的。基因探针和基于PCR的技术等诊断测试系统检测特定细菌。细菌物种通常根据基因重组频率表现出不同的种群结构。键入分离株对于流行病学研究和监视至关重要。微生物可以分为七个大型生物群:藻类,原生动物,粘液霉菌,真菌,细菌,古细菌和病毒。藻类,原生动物,粘液霉菌和真菌是真核微生物,具有类似于动植物的细胞结构。细菌,包括支原体,立克群和衣原体组,具有原核组织。古细菌是一群独特的原核生物,与其他生物没有密切的祖先关系。只有细菌和病毒在医学或兽医上被认为是重要的。病毒是具有简单结构和不同繁殖模式的最小传染剂。病毒,无蛋白质的RNA片段,引起植物的疾病,而prion是动物和人类致命神经退行性疾病的病因。传染性同工型中发生构成变化(第60章)。系统学也称为系统发育学。分类法包括三个组成部分:分类,命名和识别。分类以有序的方式群体群体,而命名法则涉及命名这些生物,要求国际协议以持续使用。命名法的更改可能会引起混乱,并受到国际商定的规则。在临床实践中,微生物学家主要专注于根据商定的分类系统识别分离株。这些组成部分以及分类法构成了与进化,遗传学和物种有关的系统学的总体学科。原生动物,真菌和蠕虫是根据卡尔·冯·林纳(Carl vonLinné)开创性工作后的标准规则分类和命名的。大类(阶级,秩序,家庭)进一步分为由拉丁二项式指定的单个物种。细菌表现出比所有其他细胞寿命的多样性更大,这使刚性分类具有挑战性。识别主要是通过基于密钥的系统来实现的,该系统基于生化性能测试系统的生长或活动来组织细菌性状。有些测试明确鉴定了属或物种,例如葡萄球菌属的过氧化氢酶产生。和细胞色素c由铜绿假单胞菌C。其他特征可能是单个物种独有的,将它们与具有相似生化谱的人区分开来。某些细菌在实验室中不生长(麻风细菌,treponemes),需要遗传学方法鉴定。如图它们可能构成一个属。随着遗传分析技术变得越来越容易获得,它们和其他快速分析方法正在取代传统的生化方法以识别。细菌分类中使用的分类等级包括王国(原核),分区(Gracilicutes),阶级(Betaproteobacteria),订单(Burkholderiales),家庭(Burkholderiaceae),属(Burkholderia)(Burkholderia)和物种(Burkholderia cepacacia)。通过DNA同源性分析将一些属(例如动杆菌)细分为基因组物种。细菌和病毒的分类构成了挑战,这是由于表型测试在区分某些基因组物种时的局限性。当前方法识别物种复合物,这些物种复合物使用多重分类学方法分为基因组群。例如,头囊菌络合物包括从植物病原体到人类病原体的各种生物。尽管没有普遍接受的分类系统,但Bergey的手册被广泛用作权威来源。国际系统细菌学委员会控制细菌命名法,并在《国际系统和进化微生物学杂志》中发布批准的细菌名称清单。病毒由国际病毒分类学委员会(ICTV)归类,并在病毒学档案中发表。在细菌分类中,主要组以基本特征(例如细胞形状,革兰氏染色反应和孢子形成)区分。属和物种通常通过发酵反应,营养需求和致病性等性质进行区分。不同字符的相对重要性通常是任意的,而Adansonian系统则使用考虑广泛字符的统计系数来确定菌株之间的关系程度。此方法可用于分类共享主要字符的较大分组中的菌株。通过评分多个表型特征,可以估计相似性或匹配系数,这些系数可以在计算机上计算以确定生物体之间相似性的程度。3.1,可以使用相似性矩阵或树状图来构建层次分类树。这种方法允许根据相似性水平(用虚线x和y表示)将生物体分离为属和物种。DNA中鸟嘌呤 - 胞嘧啶(G-C)碱基对之间的氢键强度大于腺嘌呤 - 胸腺胺(A-T)碱基对之间的强度,从而影响DNA熔化的温度。DNA序列以确定G+C含量,该含量在细菌属之间差异很大,但在物种中仍然相对一致。另一种分类方法涉及基于其DNA碱基序列的同源性进行分组。此方法利用了在受控冷却过程中的重新形态,并在互补区域之间产生混合配对。可以通过信使RNA(mRNA)结合研究获得有关相关性的遗传证据。尽管具有不同G+C比的生物不太可能显示出明显的DNA同源性,但具有相似或相同的G+C比的生物可能不一定具有同源性。系统发育相关性。已经开发了一种实时PCR方法来估计G+C含量。核糖体RNA(rRNA)的结构似乎在进化过程中是保守的,反映了系统发育关系。核苷酸测序相对简单,并导致了许多在线医学上重要的细菌物种的DNA序列的可用性。注意:我应用了“添加拼写错误(SE)”方法,其中有10%的概率引入错误。如果您要我以不同的方式重塑它,请让我知道!在此处给定文章的分枝杆菌物种鉴定对于理解其系统发育关系至关重要。尽管rDNA序列中的高相似性(> 97%),但可以使用Microseq(Applied Biosystems)等商业系统来区分不同的物种。但是,核糖体基因可能无法提供足够的变化来区分紧密相关的物种。替代候选基因(例如RECA)已被探索,并且似乎有望用于系统发育分析。在系统发育研究中也使用了其他家政基因,包括RPOB,GROEL和GYRB。这些基因定义了与RRNA基因观察到的基因一致的进化树。分类法的主要目标是促进在临床和公共卫生环境中的个人和团体的有效管理。然而,由于基因组序列数据揭示了微生物之间的相互关系,因此对与基本理解保持一致性是必要的。表3.1根据共享特征概述了简化的分类方案。门A(属)是正确的。这些群体已与最近确定的系统发育命名法对服。可以通过补充测试,有时在物种水平上进一步识别生物。形态标准足以鉴定原生动物,蠕虫和真菌。The classification of cellular micro-organisms is as follows: Eukaryotes: Protozoa - Sporozoa Plasmodium, Isospora, Toxoplasma, Cryptosporidium Flagellates Giardia, Trichomonas, Trypanosoma, Leishmania Amoebae Entamoeba, Naegleria, Acanthamoeba Other: Babesia, Balantidium Fungi: Mould-like Epidermophyton, Trichophyton, Microsporum, Aspergillus Yeast-like Candida Dimorphic Histoplasma, Blastomyces, Coccidioides True yeast: Cryptococcus Prokaryotes: Bacteria: Actinobacteria (High G+C Gram positives) - Actinomyces, Streptomyces, Corynebacterium, Nocardia,分枝杆菌,微球菌(低g-c gram阳性) - 李斯特菌,芽孢杆菌,梭状芽孢杆菌*,乳酸杆菌*,Eubacterium*革兰氏阳性杆菌,杆菌,芽孢杆菌,芽孢杆菌* Enterococcus Gram-negative cocci: Veillonella*, Mycoplasma Proteobacteria (a very large group with 5 sub-divisions) - Neisseria, Moraxella Gram-negative bacilli: Enterobacteria – Escherichia, Klebsiella, Proteus, Salmonella, Shigella, Yersinia Pseudomonads – Pseudomonas, Burkholderia, Stenotrophomonas Haemophilus, Bordetella, Brucella, Pasteurella Rickettsia, Coxiella Gram-negative curved and spiral bacilli: Vibrio, Spirillum, Campylobacter, Helicobacter Bacteroidetes - Bacteroides*, Prevotella* Borrelia, Treponema, Brachyspira, Leptospira衣原体衣原体这些单细胞生物是非斑型生物的,具有独特的核和细胞质。它们的大小从直径2-100 µm变化,其表面膜的复杂性和刚度有所不同。有些物种在内部捕获食物颗粒,而另一些物种则以细菌为食。原生动物被认为是最低的动物生命形式,它通过二元裂变或多重裂变无性繁殖。某些鞭毛原生动物与光合藻类密切相关。最重要的医学原生动物组包括Sporozoa,Amoebae和鞭毛。这些生物具有相对刚性的细胞壁,可能是腐生的或寄生的。霉菌随着分支丝的生长而生长,称为菌丝,形成了称为菌丝体的网状作品。通过形成从营养或空中菌丝体发展的性和无性孢子来繁殖。酵母是卵形细胞,通过萌芽并形成性孢子无性繁殖。二态真菌在人造培养中产生营养菌丝体,但在感染病变中类似酵母。主要的细菌组通过微观观察到其形态和染色反应来区分。革兰氏阴性程序将细菌分为两个伟大的分区:革兰氏阳性和革兰氏阴性细菌。然而,较旧的分类系统与较新的基于DNA序列的系统发育分类之间的关系是复杂的且仍在发展的。随着细菌组之间的系统发育关系开始解体,出现异常。文本描述了根据其形态学特征和染色反应对细菌和病毒进行分类的各种组。尽管如此,在临床实验室中采用的实际鉴定方案很大程度上取决于细菌的形状革兰氏阳性还是阴性,杆菌或球菌的形状,以及它们在有氧或厌氧上生长的能力。医学上有意义的细菌的主要系统发育组包括静脉细菌,其革兰氏阳性具有较高的G+C含量,具有丝状生长和菌丝体的产生; Firmicutes,一组低的G+C革兰氏阳性细菌,其中包括细菌,球菌和孢子形成器;蛋白质细菌,一大群革兰氏阴性细菌;细菌植物,革兰氏阴性厌食症;螺旋体,其特征是带有内部鞭毛的螺旋形细胞;衣原体,严格的细胞内寄生虫产生抗生素并具有非常重要的病原体。其他值得注意的组包括放线菌,链霉菌,分枝杆菌,诺卡氏菌,corynebacterium,链球菌,葡萄球菌,分枝杆菌,尿不质质,叶绿体,veillonella,veillonella,veillonella,gram阳性孢子形成的孢子形成杆菌和近亲,可能会变成gram- cortridium-new cortridiul cortridur cortriver cortridge cortridge cortridg corlam-infram-negam-inform-Gram-ne Gram-ne Gramne。例如,梭状芽胞杆菌的末端孢子具有独特的球形形状。革兰氏阳性的非孢子芽孢杆菌,包括甲ip骨和乳杆菌,倾向于在链或细丝中生长。相反,一些细菌具有使运动能力的鞭毛,例如李斯特菌。细菌可以根据其细胞壁组成,包括α-肾上腺细菌(包括人力赛组和布鲁氏菌),以及贝贝氏菌,包括静脉和伯克霍尔德里亚。尽管具有优势,但核酸测定并非没有局限性。此外,gamaproteobacteria包括大肠杆菌等肠杆菌,以及假单胞菌和军团菌。一些细菌的独特特性(例如弯曲的颤音,包括弧形霍乱)是值得注意的。divaproteobacteria群体在医学上并不显着,而Epsilonproteobacteria包括螺旋杆菌和弯曲杆菌,它们表现出螺旋形状。革兰氏阴性的非腐蚀性厌氧菌(如杆菌和prevotella)以其细长的柔性螺旋而区别。病毒,重点是它们对宿主细胞复制的依赖。某些病毒可能会包裹在脂蛋白中,而另一些病毒缺乏该外层。提出了一个分类系统,根据其遗传物质和衣壳结构对病毒进行分组。引起人类疾病的主要病毒类型包括RNA病毒,例如流感,paramyxoviruse和Flaviviviruses,以及picornaviruses和paciviruses。许多类型的病毒,包括艾滋病毒,HTLV和疱疹病毒会导致人类疾病。DNA病毒,例如痘病毒,轮状病毒和腺病毒,也感染了人。微生物学家在识别细菌时由于精确识别所需的耗时过程而面临挑战。通常,它们依赖于显微镜和培养物等简单方法,可以通过其他测试进行推定识别来支持。但是,这些方法通常至少需要24小时,因此在开始识别之前必须获得单个分离株的纯培养。与文化方法不同,非文化检测技术(例如抗原或基于核酸的检测)没有需要纯培养的缺点,但可能具有特异性的局限性。形态和染色反应可以作为将未知物种置于其适当的生物群中的初步标准。诸如革兰氏阴性,深色地面照明和阴性染色之类的技术可用于观察细菌形态,运动性和胶囊形成。在某些情况下,病理标本中某些生物体的微观特征可能足以进行假定的鉴定,例如痰液中的结节芽孢杆菌或渗出液中的T. pallidum T. pallidum。但是,许多细菌具有相似的形态特征,需要进一步测试以区分它们。固体培养基上殖民增长的出现还可以提供特征信息,包括菌落大小,形状,高程和透明度。微生物生长和特征的变化,包括透明度,不透明和颜色,可能会显着影响结果。生长所需的条件范围特定于某些生物,有些需要氧气,其他厌氧环境,而另一些则对二氧化碳水平或pH值敏感。为了区分相似的物种,可以采用评估代谢差异的测试,例如产生特定碳水化合物的酸性和气态终产物的能力。但是,现在许多实验室都使用了结合简单性和准确性的市售微磨合。此过程导致可见细菌生长的抑制作用。Some common tests used in identification include: - Production of indole or hydrogen sulphide - Presence of oxidase, catalase, urease, gelatinase, or lecithinase enzyme activities - Utilization of various carbon sources Traditionally, these tests have been performed individually according to standard guidelines.套件也可用于特定的生物组,例如肠杆菌和厌氧菌。在某些情况下,可以使用更先进的程序来分析代谢产物或全细胞脂肪酸。A fully automated system using high-resolution gas chromatography and pattern recognition software is widely used, allowing for the rapid identification of various bacterial species.Mass spectrometry also holds promise for rapid identification through matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry.由于细菌的多样性和复杂性,对细菌的检测和鉴定可能具有挑战性。Many organisms may not grow in culture, or they may require specialized nutrients, making traditional methods time-consuming and labor-intensive.然而,核酸技术的进步彻底改变了该领域,提供了更灵敏和快速的检测方法。Commercially available systems, including PCR, transcription-mediated amplification, and hybridization with specific probes, can identify a wide range of bacterial species with high accuracy.These technologies enable the detection of multiple species simultaneously, making them ideal for epidemiological investigations and antimicrobial susceptibility testing.此方法允许进行定量和形态评估。污染,操作员技能,底漆设计以及标本中抑制性化合物的存在都会影响结果。对这些结果的解释需要仔细考虑生物体的自然栖息地和共生主义的潜力。The development of new technologies, such as peptide nucleic acid (PNA) assays, holds promise for even more rapid and sensitive detection methods.These techniques use PNA molecules with DNA binding capacity to detect and identify bacterial species on microscope slides, and can be amplified using PCR to accelerate testing times.也已经开发出高密度寡核苷酸阵列,从而可以同时分析数千种不同的探针。This enables researchers to quickly identify specific genetic markers associated with antimicrobial resistance, paving the way for more targeted treatment strategies.Recent advancements include DNA sequencing, strain genotyping, and identifying gene functions, as well as locating resistance genes and changes in mRNA expression.一种创新的方法涉及在Eppendorf管中开发的选定基因靶标的阵列。The chip embedded in the tube contains optimized sets of oligonucleotide probes specific to certain organisms or antimicrobial resistance genes.这允许自定义单个细菌或组的芯片。从样品制备到检测的测定过程在单个管中在6-8小时内完成。实时PCR已广泛开发,使用荧光在单个反应管中结合了扩增和检测。该系统比常规PCR具有显着优势,包括速度,简单性和减少手动程序。基于荧光的方法可以检测DNA产物或通过与荧光标记的探针杂交提高特异性。对靶DNA的定量也是可能的,可以估计样品中的病毒或细菌数。 此外,针对16S核糖体RNA的荧光原位杂交(FISH)已用于直接在临床标本中检测细菌,而无需培养。 可以通过血清学反应来鉴定微生物的种类和类型,这些反应依赖于特有的特定物种或类型的抗体或类型的抗体,这些抗体以特征性的方式与微生物反应。 抗体在检测细菌产生的毒素和抗原以及鉴定特定病毒方面起着至关重要的作用。 基于乳胶的试剂盒广泛用于血清学组和毒素检测。 在ELISA中,特异性抗体附着在塑料孔上,并添加了测试抗原。 通过添加更特异性的抗体检测到抗原的存在,并用启动颜色反应的酶标记。 ELISA方法可以反向使用以定量检测抗体。 在Mac-Elisa中,纯化的抗原被吸附到井中,并添加了测试血清。 任何IgM与捕获试剂结合,并添加纯化的抗原以用标记的抗体检测。 某些病毒,例如流感,在红细胞上充当桥梁的受体,形成可见的团块。 但是,这种方法缺乏可重复性。对靶DNA的定量也是可能的,可以估计样品中的病毒或细菌数。此外,针对16S核糖体RNA的荧光原位杂交(FISH)已用于直接在临床标本中检测细菌,而无需培养。可以通过血清学反应来鉴定微生物的种类和类型,这些反应依赖于特有的特定物种或类型的抗体或类型的抗体,这些抗体以特征性的方式与微生物反应。抗体在检测细菌产生的毒素和抗原以及鉴定特定病毒方面起着至关重要的作用。基于乳胶的试剂盒广泛用于血清学组和毒素检测。在ELISA中,特异性抗体附着在塑料孔上,并添加了测试抗原。通过添加更特异性的抗体检测到抗原的存在,并用启动颜色反应的酶标记。ELISA方法可以反向使用以定量检测抗体。在Mac-Elisa中,纯化的抗原被吸附到井中,并添加了测试血清。任何IgM与捕获试剂结合,并添加纯化的抗原以用标记的抗体检测。某些病毒,例如流感,在红细胞上充当桥梁的受体,形成可见的团块。但是,这种方法缺乏可重复性。Haemagglutinins can be detected in tissue culture, and red cells can be coated with specific antibodies to agglutinate in the presence of homologous virus particles.荧光染料可用于染色组织或生物体,从而在紫外线下可视化。Antibody molecules can be labeled with fluorochrome dyes, enabling direct immunofluorescence procedures for highly sensitive antigen identification.该技术将抗体技术与PCR方法相结合,以增强抗原检测能力。分子生物学中的一种新方法涉及将DNA分子与抗原抗体复合物联系起来,从而产生特定的结合物。此附件允许通过PCR扩增,验证抗原的存在。免疫-PCR的增强灵敏度超过ELISA的105倍,因此检测到只有580个抗原分子。细菌种群表现出不同的结构,从高度多样化到非常相似。Recombination frequency is the primary determinant of population structure, with some species experiencing high recombination rates and others exhibiting rare recombination events.Species such as Neisseria gonorrhoeae are naturally transformable, displaying high recombination frequencies, while Salmonella enterica populations exhibit low recombination rates.细菌克隆可能显示出瞬态或持久特征。Panmictic与克隆人群的概念突出了这两种类型之间的繁殖,重组,等位基因排列和选择性压力的差异。In each family lie many genera of each type.键入分离株可以与参考标记,识别细菌物种中的菌株和分离株进行比较。区分类似菌株的能力在追踪社区或医院环境中感染的来源或传播方面具有重要意义。已经开发了各种键入方法来帮助这一过程,这可能涉及从相同起源菌株之间识别较小的差异。尽管单个打字方法可以证明相同的响应,但这不是两种菌株相同的结论性证据。但是,使用多种打字方法大大提高了相似性的置信度。键入技术可以在不同的流行病学水平上应用,包括微流行病学,宏观流行病学和种群结构分析。从键入中得出的数据可以通过识别共同或点源,区分混合应变感染以及识别再感染与复发与复发来帮助控制感染。一些方法还有助于识别与疾病相关的特定类型,例如大肠杆菌O157和溶血性尿毒症综合征。为了使方法被认为是可靠的,必须在实验室环境和临床上可以重现。在流行病学研究的背景下,首选多种键入方法,因为它们可以针对不同的特征。这些包括生物化学测试,这些测试定义了物种内的生物型,抗性分型检测对化学物质敏感性的变化以及基于营养需求的生长需求的辅助分型。可以使用此方法分析质粒和染色体DNA。此外,许多细菌的表面结构都是抗原性的,可以使用针对它们提出的抗体将分离株分为定义的血清型。物种可以根据其独特特征分为几种抗原类型。对于某些物种,血清分型是一种识别和区分不同菌株的高效方法。在其他情况下,抗原表位的保存使血清型对流行病学目的的有用程度降低。例如,沙门氏菌的物种可以通过其体细胞和鞭毛血清型来定义。研究表明,囊抗原可能在某些生物的致病性中起作用,许多疫苗通过刺激对这些抗原的抗体来起作用。噬菌体键入是一种用于识别和区分细菌菌株的方法。这涉及使用特定噬菌体的凝集或降水反应,如果适当地适应,这可能具有很高的歧视性。但是,某些噬菌体集缺乏稳定性会导致广泛的噬菌体组,而不是定义的类型。此外,控制噬菌体分型结果解释的关键因素是歧视和可重复性。噬菌体与细菌之间的相互作用是一个复杂的过程,涉及吸附,DNA注射以及裂解或复制。裂解或有毒的噬菌体可以在复制循环结束时裂解宿主细胞,从而释放可能感染相邻细胞的新噬菌体颗粒。但是,其有效性取决于噬菌体的适应和系统的稳定性。噬菌体键入已用于包括微生物学和流行病学在内的各个领域,以识别和跟踪细菌菌株。尽管存在这些局限性,但噬菌体打字仍然是理解不同细菌菌株及其特性之间关系的重要工具。只有在两个强烈的裂解反应表现出两种不同的菌株时,才能识别出两种不同的菌株。细菌素是大多数细菌物种产生的自然存在的抗菌物质,主要靶向与生产菌株同一属内的菌株。通过分析产生的细菌素的光谱或对标准面板细菌素的敏感性,细菌素键入可以定义不同类型的细菌。蛋白质组学分析,涉及具有强洗涤剂的丙烯酰胺凝胶中的凝胶电泳,也可以通过可视化数千种蛋白质并比较分离物之间的带模式来鉴定细菌物种。另外,研究人员已使用凝胶电泳来分析代谢酶,可以使用特定底物检测到该酶,用于物种内的克隆分析。限制性核酸内切酶是在特定序列识别位点切下DNA的酶。这些切割的频率取决于寡核苷酸序列,限制位点的频率以及所检查的物种的G+C含量的百分比。频繁切割的核酸内切酶产生许多小片段,可以通过琼脂糖凝胶中的常规电泳解决,并通过用染料染色检测。通过引入脉冲或在电场方向上变化,可以分开碎片至10 MB。相比之下,不经常的切割酶产生的大型DNA片段需要脉冲场凝胶电泳(PFGE)进行分离。该技术涉及将细菌包裹在琼脂糖塞中,用蛋白酶K酶消化细胞,然后用酶消化DNA。CORTOUR夹具均匀的电场(Chef)设备通常用于PFGE,并具有在六角形阵列中排列的24个电极。运行时间通常在30到40小时范围内,尽管已经描述了较短的协议。几个因素影响了这些分析的结果,包括正在检查的DNA类型,酶和反应条件的选择以及所使用的设备质量。DNA样品的质量和浓度,琼脂糖凝胶电压和脉冲时间,缓冲液强度和温度会影响脉冲场凝胶电泳(PFGE)的结果。虽然解释PFGE曲线可能是由于不同物种之间的带状模式的变化而具有挑战性的,但已通过Tenover确定了特定的标准以确定差异的重要性。通常,与显示剖面无差异的单个事件中的分离物被认为是无法区分的。一到三个频段差异的人密切相关。四到六个乐队可能表明可能的关系;七个或更多的差异表明不同的菌株。但是,该规则应谨慎应用,因为即使在同一克隆的成员之间,某些物种也会表现出显着差异。Pearson系数是另一种常用的方法,具有不需要定义特定带位置的优势。可以使用计算机辅助分析软件包来计算菌株之间相似性的系数,例如jaccard和骰子系数,这些系数使用配置文件中的一致频段来确定百分比相似性。经常使用85%相似性的截止点,但应通过实验相关且无关的应变集设置。DNA探针可以根据克隆的特异性,随机序列或通用序列检测靶DNA中的限制位点异质性。rubotyping检测rDNA基因基因座的变化,并已普遍应用于各种物种。其他常用的探针是可能定义种群克隆结构的插入序列。PCR(聚合酶链反应)是一种允许在受控条件下放大特定DNA序列的技术。可以通过使用PCR的重复放大循环来制作由特定寡核苷酸引物定义的基因组区域的多个副本。该方法已广泛用于DNA指纹和键入,利用DNA分子中的可变区域,例如串联重复区域的可变数量或具有限制性核酸内切酶识别序列的区域。两种方法都有局限性,这是由于错误启动,不同的带强度以及电泳迁移差异引起的可重复性问题。基于重复序列的PCR(REP-PCR)索引在整个基因组中多个重复序列中的变化,而自动化的REP-PCR系统对应变键入显示了有望,并且可以提供与PFGE相似的歧视。狼在can属中,而狐狸则处于喧嚣中。放大的片段长度多态性结合了限制性核酸内切酶消化与PCR,以优化基因组之间单碱基对差异的可重复性和分辨率。该技术使用核苷酸测序来分析管家基因,该基因慢慢多样化,不受选择性的作用。多焦点序列分型(MLST)可以视为确定的基因分型。但是,MLST可能对诸如结核分枝杆菌等高度均匀的物种没有效。为了增加歧视,由于环境变化,毒力相关的基因提供了较高的序列变化,因此已经针对了毒力相关的基因。通过PCR扩增基因间区域,并测序了500 bp的内部片段以识别等位基因多态性。多焦点限制输入引入了放大管家基因的限制消化,从而消除了对测序的需求。可变数字串联重复序(VNTR)是拷贝数变化的短核苷酸序列,可用于快速且可再现的键入。识别其他遗传基因座可以提供进一步的见解,但随着时间的流逝,它们的稳定性仍然存在争议。DNA测序技术的最新进展使得分析整个基因组序列成为可能,从而可以更精确的比较和细菌的键入。这种方法涉及生成可以组装并与先前分离株进行比较的短核苷酸序列读取。与这些高级分析相关的成本与传统方法变得越来越具竞争力。这样的分析可以在同期和历史分离株之间建立进化关系,从而对细菌进化有更明确的理解。此外,这项技术通过提供明确的流行病学信息并确定有助于抗生素耐药性和抗原选择压力来转化医学细菌学的重要潜力。资料来源:Barrow Gi,Feltham RKA,编辑;加里斯总经理,编辑; Kaufmann我; Murray PR,Baron EJ,Jorgensen JH,编辑;欧文·RJ; Schleifer KH; Spratt BG,Feil EJ,Smith NH; Tenover FC,Arbeit Rd,Goering RV; Van Regenmortel MHV,Fauquet CM,Bishop DHL,编辑; Woese Cr。分类类别是称为分类单元的层次组,其中包含一小部分物种,该物种来自一个相对较新的共同祖先。可以在下面可视化整体层次结构以供参考:尽管研究不同生物体的科学家在分类方案中有所不同,但属背后的一般概念是它代表物种祖先相关的物种,并且与其他属不同,不包括不必要的物种。确定这在于每个研究者,但是这些一般指南在属属方面保持分类相当狭窄。属属的分类单元通常包括群体之间可识别的身体形式。例如,Felidae和Canidae分别代表类似猫的生物和类似狗的生物。最后一步,物种定义了在连续单位中共同繁殖的人群和群体。在一起,这些名字告诉您有关生物体的很多信息。在大多数情况下,由于遗传,行为或形态学差异,不同的属将不会繁殖。Carl Linnaeus通过他的生物生物命名计划(二项式命名法)普及了“属”一词,尽管他对属的定义与我们的现代观点有所不同,但在二项式命名法中使用通用epithets在二项式术语中的使用仍在继续。通用称呼是二项式命名法中描述有机体所属属的动物名称的两个单词。第二个单词或特定的称呼描述了有机体所属的生物或物种更紧密相关的群体。通过了解一个人也知道家庭,秩序和所有其他分类分类。由于分层群体是由生物之间的相似性安排的,所以这些关系告诉了我们很多有关单个动物的信息。知道该物种可以告知我们动物与该属中其他动物的独特性。例如,Honey Badger具有科学名称Mellivora Capensis。有时,属可能包含数百种物种,尤其是在鱼类和无脊椎动物中。这种品种具有误导性,因为它应该反映进化。进化多样性决定了属内生物的数量。如果许多物种随着属的传播而出现,将会有许多物种。相反,如果只有一个物种幸存,则只有一个物种。分类分类是一个持续的过程,每天都描述了新的属。一些新发现的生物从未被命名,而另一些有机体则根据DNA分析重新分类。通过分析DNA,比较性状并提出系统发育,科学家假设最可能的进化进展。这将为命名惯例提供信息,并确定哪些物种可以成为独特的属。物种代表属内生殖分离并与其他群体独特的群体。家庭是分层分类中属的分类单元。分类单元是指具有相似特征的群体。两条鱼一起游泳可能不会繁殖,而是具有类似的特征,与其他任何海洋鱼不同。如果它们可以杂交,则将被视为物种。北极熊和棕熊在同一属中是不同的物种,但仍可以成功繁殖。这是因为它们占据了独特的生态位,很少彼此遇到繁殖。生态障碍可以阻止它们自然繁殖,即使它们的后代是可行的。随着气候变化耗尽冰盖,可以将北极熊推向较低的纬度,并可能与棕熊杂交。科学家辩论是否应基于进化连接和物理特征将新物种添加到属中。如果两组共有共同的血统,则它们应属于同一属,即使它们在细胞外基质产生等特征上有所不同。在Fakus细菌的情况下是一种具有相似DNA但缺乏定义该属的独特基质的新物种,分类学家必须权衡多个领域的证据。通过分析解剖学,行为和遗传数据,科学家可以重建生物体之间的关系,并就分类做出明智的决定。