将打靶特定人源基因的 Cas9 和 sgRNA 转染到 HEK293 细胞。转染所用的质粒 DNA 上含有 表达带双端核定位序列 ( NLS )的 Cas9 及 sgRNA 的表达框,通过 TransIT-X2 (Mirus) 转染 试剂进行转染。转染所用的 Cas9 mRNA 进行了假尿苷和 5- 甲基胞嘧啶修饰且带有双端 核定位序列,使用 transIT-mRNA 转染试剂将 sgRNA 和 mRNA 共转染。 Cas9 RNPs 使用脂质 体 RNAiMAX ( Life Technologies ) 进行反向转染, RNP 的终浓度为 10 nmol 。 Cas9 蛋白上不含 核定位序列。 EnGen Cas9 含有双端核定位序列。编辑效率通过 T7E1 实验进行分析,结果 以修饰百分比进行统计。
我们的研究检查了 CRISPR/Cas9 方法对参与生长素生物合成途径的色氨酸氨基转移酶 BnaTAA1 基因的突变效率。我们制作了九种 CRISPR/Cas9 构建体,这些构建体具有不同的启动子,可驱动金黄色葡萄球菌 Cas9 (SaCas9) 或植物密码子优化的化脓性链球菌 Cas9 (pcoCas9) 的表达。我们开发了一种快速有效的系统,用于评估每个构建体使用油菜毛状根引起的突变种类和频率。我们发现 pcoCas9 在突变目标位点方面比 SaCas9 更有效,并且 NLS 信号的存在使诱变机会增加了 25%。在再生系中进一步研究了突变,并确定了转基因植物中 BnaTAA1 基因的表达和基因修饰的遗传性。毛状根转化与 CRISPR/Cas9 介导的基因编辑相结合,为研究重要油料作物 B. napus 中的靶基因功能提供了一种快速而直接的系统。
比较 EnGen Spy Cas9 NLS、EnGen Spy Cas9 HF1 和其他市售高保真 Cas9 变体的引导 RNA 序列与靶 DNA 序列之间的错配容忍度。允许编码与荧光标记的 dsDNA 底物单、双或三错配的几种引导 RNA 之一与五种 Cas9 变体中的每一种形成核糖核蛋白 (RNP) 复合物。包括完全匹配的引导 RNA 作为对照。将 RNP 与底物以 2:1 的比例在 37°C 下孵育 5 分钟。通过毛细管电泳测量每个 RNP 复合物的底物裂解百分比。结果绘制为热图,白色表示无裂解,蓝色强度增加表示裂解百分比增加。每行均标明引导 RNA 序列,错配以绿色表示。 DNA 原型间隔序列为 5´ – AGAACTGGCAGAGGAGGTAG – 3´,原型间隔相邻基序 (PAM) 为 5´– TGG – 3´。EnGen Spy Cas9 HF1 显示出最高的靶向切割与平均脱靶切割比率,从而表明对错配的敏感性增加。
比较 EnGen Spy Cas9 NLS、EnGen Spy Cas9 HF1 和其他市售高保真 Cas9 变体的引导 RNA 序列与靶 DNA 序列之间的错配容忍度。允许编码与荧光标记的 dsDNA 底物单、双或三错配的几种引导 RNA 之一与五种 Cas9 变体中的每一种形成核糖核蛋白 (RNP) 复合物。包括完全匹配的引导 RNA 作为对照。将 RNP 与底物以 2:1 的比例在 37°C 下孵育 5 分钟。通过毛细管电泳测量每个 RNP 复合物的底物裂解百分比。结果绘制为热图,白色表示无裂解,蓝色强度增加表示裂解百分比增加。每行均标明引导 RNA 序列,错配以绿色表示。 DNA 原型间隔序列为 5´ – AGAACTGGCAGAGGAGGTAG – 3´,原型间隔相邻基序 (PAM) 为 5´– TGG – 3´。EnGen Spy Cas9 HF1 显示出最高的靶向切割与平均脱靶切割比率,从而表明对错配的敏感性增加。
简介 [1] 图的 T 下标可以通过使用不同翻转角和/或重复时间 (TR) 获取的损坏梯度回忆回波 (SPGR) 图像计算得出。信号强度与翻转角和 TR 之间的关联函数是非线性的,但目前广泛使用的是 Gupta 于 1977 年 [1] 提出的线性形式 [1-6]。利用该线性模型,可以用线性最小二乘 (LLS) 法估计 [1] 的 T 下标,该方法具有计算效率高的优点。然而,我们的初步研究发现,使用这种 LLS 方法估计的 [1] 的 T 下标普遍存在偏差且被高估 [7]。我们提出了一种新的加权线性最小二乘 (WLLS) 方法,该方法在拟合中使用调整后的不确定性。所提出的 WLLS 方法用不确定性对每个数据点进行加权,该不确定性可校正由非线性模型转换为线性模型产生的噪声贡献。使用数值和人脑数据模拟来比较使用 LLS、WLLS 和非线性最小二乘 (NLS) 方法估计的 [1] 的 T 下标的准确性。
比较Engen间谍Cas9 NLS,Engen Spy Cas9 HF1的指南RNA序列和目标DNA序列之间的不匹配的耐受性,以及其他商业可用的高保真cas9变体。与荧光标记的DsDNA底物编码单个,双或三倍不匹配的几个指南RNA之一,可以与五个Cas9变体中的每一个形成核糖核蛋白(RNP)复合物。将完全匹配的导向RNA作为对照包括。将RNP与底物在37°C下以2:1的比率孵育5分钟。通过毛细管电泳测量每个RNP复合物的底物裂解百分比。的结果是作为热图的图形图形,白色代表没有裂解和蓝色强度的增加,表明裂解百分比增加。指南RNA序列在每一行中指示,并以绿色表示不匹配。DNA原始序列序列为5´ - agaactggcagagaggagggtag - 3´,而原始的邻接基序(PAM)为5´– TGG - 3´。Engen间谍Cas9 HF1通过显示出靶向裂解与平均脱靶裂解的最大比例,表现出对不匹配的敏感性提高。
腺相关病毒(AAV)是世界上最有前途的基因疗法载体之一,因此,是研究最深入的病毒载体之一。尽管对这些载体进行了大量研究,但AAV的精确表征却尚不清楚。最近我们确定了AAV猪菌株的核定位信号,并确定了其与宿主进口蛋白结合的机制。为了扩展我们对各种AAV进口机制的理解,我们试图确定cap蛋白来自蝙蝠侵袭AAV的机制可以与转移受体进口蛋白相互作用,以转移到核中。使用高分辨率的晶体结构和定量测定,我们不仅能够确定CAP蛋白的N末端结构域的确切区域和残基,该区域构成了与Importin Alpha Two蛋白结合的功能性NLS,而且还揭示了跨导入蛋白 - Alpha同型的结合亲和力的差异。我们的结果允许详细的分子视图AAV帽蛋白与宿主蛋白相互作用以将其定位到细胞核中的方式。
摘要:CGAS刺信信号传导是诱导I型IFN的主要途径,在防御巨型T. gondii感染中起着至关重要的作用。相比之下,T。Gondii制定了多种策略来抵消宿主防御,从而在广泛的宿主中引起严重疾病。在这里,我们证明了T. gondii Rhoptry蛋白16(ROP16)通过抑制CGA(环状GMP-AMP合酶)途径通过刺痛的多素化抑制I型干扰素信号传导。Mech-在动态上,ROP16通过信号域与STING相互作用,并抑制NLS(核定位信号)domain依赖性方式中STIN的K63连接的泛素化。conse,在Pru tachyzoites中淘汰了ROP16,促进了I型IFN的刺激介导的产生,并限制了T. gondii的复制。一起,这些发现描述了一种独特的途径,其中T. gondii利用了sting的泛素化来逃避宿主的抗寄生虫免疫,从而揭示了对宿主与寄生虫之间相互作用的新见解。
在活细胞中基因组基因局的标签为研究基因组空间组织和基因相互作用提供了视觉证据。CRISPR/DCAS9(群集定期间隔短的短倾向重复序列/停用CAS9)通过DCAS9/SGRNA/荧光蛋白复合物与靶基因组基因座中重复序列的结合来标记基因基因。但是,核中存在许多荧光蛋白通常会引起高背景荧光读数。本研究旨在通过重新设计由DCAS9-Suntag-NLS(目标模块)和SCFV-SFGFP-NLS(信号模块)组成的当前CRISPR/DCAS9- SUNTAG标签系统来限制进入核的荧光模块的数量。我们删除了信号模块的核位置序列(NLS),并将EGFP的两个副本插入信号模块中。核的荧光强度与细胞质的荧光强度(N/C比)降低了71%,信号与背景(S/B比)的比率增加了1.6倍。该系统可以稳定地标记随机选择的基因组基因局基因局基因组基因座,少于9个重复序列。
自然语言解释(NLE)是阐明大语模型(LLM)决策背后推理的案例。已经开发了许多技术来使用LLM生成NLS。但是,像人类一样,LLM可能并不总是在第一次尝试时产生最佳的NLE。受到人类学习过程的启发,我们引入了C Ross -R Efine 1,该1分别通过部署两个LLM作为生成器和评论家来采用角色建模。代理人输出了第一个NLE,然后使用评论家提供的反馈和建议来完善这种易于解释。c ross -r efine不需要任何有监督的培训数据或附加培训。我们通过自动和人类评估使用三个最新的开源LLM验证了三个NLP任务中的C ROSS -R efine。我们选择S ELF -R Efine(Madaan等人,2023)作为基线,它仅利用自我反馈来完善解释。我们从自动评估中的发现和用户研究表明,C ROSS -R efine的表现优于S ELF -R efine。同时,C ross -r efine可以使用较少的功能LLM有效地执行,而S Elf -R efine仅通过ChatGpt产生强劲的结果。此外,我们进行了一项消融研究,以评估反馈和建议的重要性。他们俩在完善解释中起着重要作用。我们在英语和德语的双语数据集上进一步评估了c ross -r efine。