本文探讨了编码器和解码器语言模型在词语自然语言理解(NLU)任务上的性能,并广泛着重于语言语言。在扫描基准的基础上构建,最初仅限于评估编码器模型,我们将评估框架扩展到包括解码器模型。我们介绍了一种在NLU任务上进行评估解码器模型的方法,并将其应用于丹麦语,瑞典语,挪威,冰岛,法罗语,德语,德语,荷兰语和英语的语言。通过一系列的演出和分析,我们还解决了有关编码器和解码器模型的比较性能,NLU任务类型的影响以及跨语言资源的变化的问题。我们的发现表明,尽管参数的数量级较少,但编码器模型比解码器模型可以实现明显更好的NLU表现。此外,我们通过UMAP分析研究了解码器与任务性能之间的相关性,从而阐明了解码器和编码器模型的独特功能。本研究有助于更深入地了解NLU任务中的语言模型范例,并为多语言环境中的模型选择和评估提供了有价值的见解。
拉脱维亚大学数学与计算机科学学院 (IMCS UL) 的人工智能实验室 (AI Lab) 成立于 1992 年,从事自然语言处理 (NLP) 和机器学习 (ML) 的研究。这两个研究方向密切相关,通过与行业合作伙伴共同实施大量创新项目以及通过国际合作,这两个方向获得了显著的推动。AI Lab 特别关注跨语言的自然语言理解 (NLU) 和生成 (NLG),结合基于知识的方法和机器学习方法。我们在 NLU 方面的工作包括语音识别、从非结构化文本和录音以及图像和视频数据中提取信息和构建知识图谱。NLG 方面的工作包括从数据和抽象含义表示生成文本,以及文本到语音的合成。我们在 NLU 和 NLG 的几个方向和方面进行研究:• 语音转文本识别和文本转语音
重要性:大型语言模型(LLMS)可以帮助进行广泛的医疗保健相关活动。当前评估LLM的方法使得难以识别最有影响力的LLM应用领域。目的:总结以5个组成部分对医疗保健中LLM的当前评估:评估数据类型,医疗保健任务,自然语言处理(NLP)/自然语言理解(NLU)任务,评估维度和医学专业。数据来源:对PubMed和Web Science进行了系统搜索,用于在01-01-2022和02-19-2024之间发表的研究。研究选择:评估医疗保健中一个或多个LLM的研究。数据提取和综合:三名独立审核者根据评估中使用的数据,医疗保健任务(what)和NLP/NLU任务(如何检查),评估维度(评估维度)以及所研究的医疗专业的维度分类。
为了破译人脑的语言表示基础的算法,先前的工作通过对NLU任务进行了微调的预先调整的预先训练的人工神经网络(ANN)模型对大脑对语言输入的反应。然而,完整的微调通常会更新整个参数空间并扭曲预训练的功能,从而与大脑的强大多任务学习无关。及时调整可以保护预训练的权重,并学习特定于任务的嵌入以适合任务。迅速调整是否会产生代表,可以更好地说明大脑语言表示的比较?如果是这样,什么样的NLU任务会导致预先训练的模型更好地解码人脑中所代表的信息?我们通过比较神经解码中的迅速调整和微调的表示来调查这些问题,这预测了刺激引起的大脑活动的语言刺激。我们发现,在10个NLU任务中,全面的微调都没有明显胜过神经解码的迅速调整,这意味着一种更一致的调谐方法会产生代表性的代表,可以更好地与大脑数据相关。更重要的是,我们确定处理精细概念的任务意味着比其他任务更好地解码大脑激活模式的屈服表示,尤其是句法构成任务。这表明我们的大脑编码代表语言时浅层句法信息更细粒度的概念信息。
重要性:大型语言模型(LLMS)可以帮助进行广泛的医疗保健相关活动。当前评估LLM的方法使得难以识别最有影响力的LLM应用领域。目的:总结以5个组成部分对医疗保健中LLM的当前评估:评估数据类型,医疗保健任务,自然语言处理(NLP)/自然语言理解(NLU)任务,评估维度和医学专业。数据来源:对PubMed和Web Science进行了系统搜索,用于在01-01-2022和02-19-2024之间发表的研究。研究选择:评估医疗保健中一个或多个LLM的研究。数据提取和综合:三名独立审核者根据评估中使用的数据,医疗保健任务(what)和NLP/NLU任务(如何检查),评估维度(评估维度)以及所研究的医疗专业的维度分类。
BERT:一种多功能的 AI 工具,可自动执行 TBM 分类法分类 从历史上看,计算机很难“理解”文本形式的语言。虽然这些机器可以非常有效地收集、存储和读取文本输入,但它们缺乏基本的语言背景或意图。幸运的是,自然语言处理 (NLP) 和自然语言理解 (NLU) 可以帮助完成这项任务。这种语言学、统计学、机器学习和人工智能的结合过程不仅可以帮助计算机“理解”人类语言,还可以破译和解释特定文本的意图。 BERT 体现了 NLP 和 NLU 的最新进展,它由 Google 开发并向公众开源。 BERT 依赖于 Transformer 模型架构 [3] 的编码器部分,该架构也是由 Google 开发的。它使用自注意力机制来捕捉单词的语义。该机制使用优雅而简单的线性代数运算来建立单词(或在 BERT 上下文中为标记)之间具有不同权重的关系。权重决定了标记之间的接近度并捕获序列的上下文。
墨西哥城2024年4月16日。 JoséRubénLuévanoEnriquez负责基础科学系的主题:通过目前的申请请求,我要求雇用RoqueSánchezSalas博士,作为化学材料领域的客座教授,是材料技术领域的访问者。我提供了所有必要的文档以执行必要的程序,我正在寻找任何疑问或澄清。 div>感谢您的关注。 div>真诚地,“开放时间” div>
通过使用计算机视觉,AI解释了复杂的医学成像,为我们对生理条件的理解增加了一层深度。 自然语言理解(NLU)将这种能力扩展到文本数据,通过临床注释进行解析,并报告了提取相关健康信息的结果,将其无缝整合到更广泛的健康状况中。 图形神经网络(GNNS)通过对不同的健康决定因素之间的复杂关系进行建模,从而提供了一个动态框架,从而反映了健康因素的现实世界相互联系,从而进一步丰富了该数据综合。通过使用计算机视觉,AI解释了复杂的医学成像,为我们对生理条件的理解增加了一层深度。自然语言理解(NLU)将这种能力扩展到文本数据,通过临床注释进行解析,并报告了提取相关健康信息的结果,将其无缝整合到更广泛的健康状况中。图形神经网络(GNNS)通过对不同的健康决定因素之间的复杂关系进行建模,从而提供了一个动态框架,从而反映了健康因素的现实世界相互联系,从而进一步丰富了该数据综合。
查询重写 (QR) 是一种越来越重要的技术,可用于减少对话式 AI 系统中的用户摩擦。用户摩擦是由各种原因造成的,包括自动语音识别 (ASR)、自然语言理解 (NLU)、实体解析 (ER) 组件中的错误或用户的口误。在这项工作中,我们提出了一个基于搜索的自学习 QR 框架:基于用户反馈搜索的查询重写系统 (UFS-QR),该系统专注于自动减少大规模对话式 AI 代理的用户摩擦。所提出的搜索引擎在全球用户和个人用户级别上运行,将语义嵌入、NLU 输出、查询流行度和估计的摩擦统计数据用于检索和排名过程。为了构建索引并训练检索/排名模型,我们采用了一种基于自学习的方法,利用从用户历史交互中学习到的隐式反馈。我们通过对 Amazon Alexa 用户流量进行离线和在线 A/B 实验,证明了在没有任何注释数据的情况下训练的 UFS-QR 系统的有效性。据我们所知,这是第一个部署的自学习和基于搜索的二维码系统,用于对话式人工智能中自动减少摩擦的一般任务。