1.引言在摩尔定律的驱动下,半个多世纪以来半导体产业一直致力于缩小特征尺寸。最近,13.5 纳米极紫外光刻 (EUVL) 技术已经应用于 5 纳米节点 HVM。由于目前 0.33 NA 的限制,EUVL 无法分辨小于 13 纳米线/线距的特征。与 EUVL 相比,定向自组装 (DSA) 表现出高达 5 纳米 L/S 的极精细分辨率,被视为亚 10 纳米甚至亚 5 纳米特征尺寸的潜在图案化技术[1-9]。最近,含金属 EUV 光刻胶已被开发用于提高超薄 EUV 光刻胶膜的抗蚀刻性[10,11]。最近,我们的研究小组报道了一系列具有氟化嵌段的 BCP,经过中等温度下 1 分钟的热退火后迅速形成亚 5 纳米域[12,13]。我们假设氟化侧链对超精细分辨率和图案化速度起着关键作用。然而,由于薄膜超薄,抗蚀刻性是 5 纳米以下 DSA 材料的主要问题。
图5.2。相对电阻与EM测试的时间降解图。图中指出了两种不同的降解行为模式。...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................5.3。分别用于带有双层和三层屏障的样品的t = 275、300、325°C的时间的CDF图和j = 2×10 -6 a/cm 2。.....................................................................................................................................................................................................................................................................................................................................5.4。fib图像显示了(a)早期和(b)晚期失败的双层的下游诱导的空隙,以及(c)早期和(d)晚期失败的三层。虚线箭头指示电子流的方向。................................................................................................ 55 Fig.5.5。在t = 300°C下的双层三层屏障样品的双峰拟合。.................................................................................................. 56 Fig.5.6。Arrhenius图作为分裂A和B的温度的函数。提取早期和晚期失败模式的激活能。....... 58图6.1。tem显示了分裂的典型模具的Cu凹陷深度(a)a,(b)b和(c)c,分别为低,中值和高降低。....................................................................................................................................................................................................................................................................................................................................................... 64图6.2。在M2层的三个拆分中有缺陷的死亡百分比。............................................................................................................................................................................................................................................................................................................................................................................................................... 65图6.3。通过V2M2处的三个分裂的接触电阻。6.4。6.5。6.6。.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................在t = 275、300、325°C分开a的时间的时间(TTF)的CDF图(TTF),J = 2×10 6 A/cm 2。.................................................................................... 67 Fig.来自PFA的EM测试结构的 FIB图像显示了(a)早期和(b)晚期失败的下游诱导的空隙。 ................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 使用物理方法在t = 300°C下分裂A至C的双峰拟合。69图 6.7。 MTTF的Arrhenius图作为拆分a的温度的函数。 7.1。 2步(实线)和3步(仪表板线)Cu种子层的沉积功率。 ............................................................................................................ 76 Fig. 7.2。 (a)带有3步和2步Cu种子层的金属线的泄漏电流和(b)板电阻。 ....................................................................................................................................................................................................................................................................................................................... 78FIB图像显示了(a)早期和(b)晚期失败的下游诱导的空隙。...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................使用物理方法在t = 300°C下分裂A至C的双峰拟合。69图6.7。MTTF的Arrhenius图作为拆分a的温度的函数。7.1。2步(实线)和3步(仪表板线)Cu种子层的沉积功率。............................................................................................................ 76 Fig.7.2。(a)带有3步和2步Cu种子层的金属线的泄漏电流和(b)板电阻。....................................................................................................................................................................................................................................................................................................................... 78
摘要ð集成光子学提供了有用的光子量子信息处理所需的可扩展性。许多光谐振器必须与相同的泵波长对齐,以产生驱动此类系统的量子相关光子对的来源,但是现有的解决方案依赖于手动对齐或基于外部光电二极管和块状块外芯片电子设备的手动对齐或离线调整,从而限制了可伸缩性。在这里,我们使用与标准的45 nm CMOS铸造工艺中的光子元素一起集成的电路对硅微林中的四波混合(刺激和自发)的反馈控制。载体扫描生成的反馈信号可在光子对生成方案中实现原位操作,这是一个关键的构建块,可实现大规模的CMOS量子量子 - 光片系统。
,由于符合微型生产和降低成本的新创新生产技术,激光微加工在电子产品领域正在动态增长。一个例子是在印刷电路板(PCB)制造过程中使用激光器。对于刚性和Flex电路,该行业预测引入关键维度,这些临界维度无法以当前技术的可接受成本实现[1]。该行业一直在寻找紧凑,轻巧且具有成本效益的创新激光来源,以生产先进的电子产品。使用激光技术的主要驱动力是微型化的不断进步 - 激光器提供了一种高度准确,精确和非接触式的替代方案[2,3]。当前,激光用于各种PCB生产过程,包括钻孔,板块,分析(切割),抗焊接面具的曝光过程 - 激光直接成像(LDI),修复,修剪,标记,标记和滑雪过程[4]。
ERTICAL -外腔面发射激光器 (VECSEL) 因其能够在很宽的波长范围内产生高功率高亮度发射而备受关注 [1]。半导体增益的固有波长多功能性与开放式谐振腔相结合,可以实现从紫外到中红外的基波和频率转换发射 [2]。然而,VECSEL 的技术发展并未均匀分布在所有波长区域,导致某些光谱窗口的覆盖效果不佳。700-800 nm 范围就是一个例子,它最近因在生物光子学 [3]、医学 [4] 和光谱学 [5] 中的应用而引起了人们的关注。此外,该波长范围的频率倍增为紫外发射开辟了新的途径,原子分子和光学物理学可以从窄线宽可调谐激光器中受益,可用于原子冷却和同位素分离 [6]。
摘要 - 在光子电路和组件之间的超低损失光学耦合在许多应用中至关重要,例如光子量子计算,传感或光学通信。本文通过表征其光学偶联效率(CE)和几何形状鲁棒性来表征基于SU-8的锥度光学互连的热稳定性,当时聚合物承受高温。在1分钟至120分钟内,将锥度从280°C加热到400°C。实验结果表明,耦合效率降解与高温期的持续时间是线性的,而温度和持续时间之间的关系则符合定义的CE损失的对数模型。它提供了一种有用的方法来预测超过给定CE损失之前的最大温度和持续时间,因此可以预测材料处理的最大评分。提取了最大0.1 dB光学耦合降解的极限温度持续曲线。然后证明SU-8龙头可以承受300°C的温度最多9分钟,而350°C的温度最多可容纳1分钟和30 s,而光损失小于0.1 dB。锥度的结构机械稳定性被确认为400°C,持续1小时,远高于上述光学极限。
电子系统的快速增长已成为非常大规模集成(VLSI)设计的高性能的挑战之一,并为相位锁定环(PLL)系统设计的发展做出了贡献,它是现代不可避免的重要必需品之一。这种设计集中于可以在超宽带(UWB)频率内以高性能运行的PLL系统的开发,但消耗了低功率,这可能对通信系统中的将来的设备实现有用。PLL的所有提议的子模块都非常适合低功率和高速应用,因为它们每个人都消耗了2 µW左右的总体功耗,直到1 MW,频率从3.1 GHz到10.6 GHz。使用90 nm CMOS技术中的Synopsys工具实现了所有设计架构,示意图,仿真和分析。通过整体分析,可以得出结论,在功耗和频率方面,与以前的工作相比,PLL系统的拟议子模块设计具有更好的性能。
塞拉县是位于新墨西哥州中南部的一个农村社区,位于德克萨斯州埃尔帕索和阿尔伯克基之间,是美国太空港的所在地。该地区包括格兰德河、希拉和西波拉国家森林、卡巴洛湖和该州最大的湖泊大象山湖。真理或后果 (T 或 C) 是塞拉县最大的城市。真理或后果 (T 或 C) 提供世界上最好的热矿泉浴,被誉为美国最实惠的温泉小镇。农业和旅游业仍然是经济驱动力;然而,随着美国太空港的开始运营,该地区吸引了航空航天业,包括 SpinLaunch。塞拉县占地 4,236 平方英里,拥有广阔的空间和美丽的风景,从沙漠到草原再到山区。该地区气候宜人,平均日照时间为 340 天。海拔范围从 Elephant Butte 和 T 或 C 的约 4,300 英尺到 Reed's Peak 的 10,000 英尺以上。为什么选择塞拉县?工作就在您玩耍的地方,工作就在您玩耍的地方!该地区提供无数全年户外休闲机会、温泉矿泉浴、丰富的野生动物以及风景优美的壮丽景色。如果您喜欢户外活动,塞拉县就是您的理想选择。工作结束后,当地人分享一种休闲理念:划船、漂浮和浸泡。当地人在 Elephant Butte 湖上划船,在格兰德河上乘坐内胎或木筏漂流,并在一天结束时在著名的热矿泉中浸泡以恢复体力。
摘要:单壁碳纳米管(SWCNT)和底物之间的界面热电导很少被表征和理解,这是由于在探测跨这样的NM范围接触的能量传输方面的重大挑战。在这里,我们报告了<6 nm厚的SWCNT束和Si底物之间的界面热电导。用于测量能量传输状态分辨的拉曼,其中拉曼频谱在连续波(CW)下变化,并测量20 ns脉冲激光加热,用于在稳定和短暂的热传导下通过界面热导电持续的稳定和短暂热传导的热响应。由于样品的激光吸收和温度升高不需要知识,因此测量可以实现极端的能力和置信度。在SWCNT束的三个位置中,测量界面热电阻为(2.98±0.22)×10 3,(3.01±0.23)×10 3,以及(1.67±0.27)×10 3 K M W - 1,对应于范围内的热电导率(3.3-3-6.0-×10)。我们的分析表明,SWCNT束和SI基板之间的接触松散,这主要归因于样品的明显不均匀性,这是通过原子力显微镜和拉曼光谱法解决的。对于假定的接触宽度约为1 nm,界面热电阻的阶将为10-6 W m-2 k-1,与报告的机械去角质石墨烯和二维(2D)材料一致。
本论文是 IMS 实验室、波尔多大学和斯伦贝谢研究与生产部门的合作研究。我要感谢所有人的帮助和耐心,使这份手稿得以实现。首先,我要对我的导师 Cristell Ma-neux 和 Yann Deval 表示深深的谢意,感谢他们的持续支持和宝贵指导。特别是,我要向 Cristell 表示最深切和最诚挚的感谢,她为完成这项工作做出了重大贡献。多亏了她从一开始就提供的宝贵和有益的建议,我才能将这项研究推向正确的轨道。我很感激她在我刚开始问最愚蠢的问题时对我如此耐心。在她用红色写的详细修改后,我感觉自己一天天在进步,对此我深表感激。我还要感谢我在斯伦贝谢的导师 Claire Tassin。从我到达的第一天起,她就帮助我融入了公司。在她的协助和热情支持下,我在斯伦贝谢的实验得以尽快完成。她给了我明确的方向,让我可以坚持下去。我真的很感激她总是在我需要帮助的时候出现。在 ASIC 团队中,我要感谢 Mohamed Salim Cherchali 让我熟悉了编写自动测试台的代码行。他非常耐心地直截了当地解释了 Python 的基础知识,为我以后自学奠定了基础。他还教我如何使用斯伦贝谢实验室的仪器进行实验。此外,我还要感谢 Toshihiro Nomura,他总是以详细和及时的方式回答我的小问题。当我的实验装置出现问题时,他是我第一个去找的人。在装置的最初几天,遇到了很多困难和技术问题。Toshi 和 Salim 必须经常在实验室呆到晚上 9 点以后,帮助我找到问题并一起找到解决方案。我们失败了很多次才完成整个装置。多亏了他们知识渊博、热情洋溢的指导,我的测量得以进行,我从他们的实践经验中学到了很多新东西。感谢 IMS 实验室前秘书 Simone Dang Van 和她的丈夫偶尔在周末到他们家,他们家很宽敞,热情欢迎我。他们向我讲解了很多关于法国文化的知识,帮助我从一开始就融入了波尔多的生活。我还要感谢 IMS 实验室的所有朋友,感谢我们一起共进午餐,一起交谈,分享困难,互相鼓励,克服困难。感谢我的越南朋友,他们也是法国不同城市的博士生,他们总是陪在我身边,鼓励和“提醒”我经常锻炼。假期我们一起旅行,想家的时候互相安慰。