与LCO相比,镍与钴在结构内的比率可以在相同电压下具有更高的能力,从而可以达到更高的能量密度。这种高能量密度使它们在电动汽车应用中特别有吸引力。自成立以来,NMC阴极的组成已被完善,以追求更高的实用能量密度。新的NMC组成是通过改变组成型过渡金属的比率而创建的,从而将结构推向了更多镍富集。这些组合物包括NMC622(Lini 0.6 MN 0.2 CO 0.2 O 2)和NMC811(Lini 0.8 MN 0.1 CO 0.1 CO 0.1 O 2),这些NMC622(LINI 0.1 CO 0.1 O 2)今天在电池生产中广泛使用。未来的NMC类型材料包括富含锂和锰的阴极材料(LMR-NMC),有望更高的能量密度。由于镍和钴的限制和挥发性供应链,NMC氧化物比LFP型化学物质昂贵,但比LCO便宜。
北美电动汽车和能源存储系统的指数增长需要开发锂离子电池组件的强大的国内供应链,尤其是阴极的活动材料(CAM)。Novonix开发了一种创新的全简洁,零浪费的阴极合成过程,该过程消除了共同的步骤,大大降低了用水,废物和成本。这种方法简化了生产流,减少单位运营并降低功耗,与常规阴极合成路线相比,资本费用强度的降低30%,降低了近50%(不包括原料)处理成本。Novonix的单晶Lini 0.6 MN 0.2 CO 0.2 O 2(NMC622),通过全干,零浪费的过程合成,表现出与商业产生的单晶NMC622的可比较的电化学性能。全细胞电池测试表明有竞争力的排放能力(Q D),第一周期效率(FCE),气体演化和长期循环稳定性。这些表明,全干,零浪费的过程对于产生高质量的NMC凸轮是可行的,同时具有重要的环境和经济优势。该技术在其他阴极化学中的进一步探索和应用可能在开发锂电池的可持续和成本效益的国内和全球供应链中发挥关键作用。
北美电动汽车和储能系统预计将呈指数级增长,因此有必要开发强大的锂离子电池组件(尤其是阴极活性材料 (CAM))国内供应链。NOVONIX 开发了一种创新的全干式、零废物阴极合成工艺,该工艺消除了共沉淀步骤,大大减少了用水量、废物和成本。与传统的阴极合成路线相比,该方法简化了生产流程、减少了单元操作并降低了功耗,可将资本支出强度降低 30%,加工成本(不包括原料)降低近 50%。NOVONIX 通过全干式、零废物工艺合成的单晶 LiNi 0.6 Mn 0.2 Co 0.2 O 2 (NMC622) 表现出与商业生产的单晶 NMC622 相当的电化学性能。全电池测试表明具有竞争力的放电容量 (Q d )、首次循环效率 (FCE)、气体释放和长期循环稳定性。这些结果表明,全干式、零废弃工艺可生产高品质 NMC CAM,同时具有显著的环境和经济优势。进一步探索和应用该技术到其他阴极化学中,可能在开发可持续且具有成本效益的国内和全球锂离子电池供应链方面发挥关键作用。
北美电动汽车和能源存储系统的指数增长需要开发锂离子电池组件的强大的国内供应链,尤其是阴极的活动材料(CAM)。Novonix开发了一种创新的全简洁,零浪费的阴极合成过程,该过程消除了共同的步骤,大大降低了用水,废物和成本。这种方法简化了生产流,减少单位运营并降低功耗,与常规阴极合成路线相比,资本费用强度的降低30%,降低了近50%(不包括原料)处理成本。Novonix的单晶Lini 0.6 MN 0.2 CO 0.2 O 2(NMC622),通过全干,零浪费的过程合成,表现出与商业产生的单晶NMC622的可比较的电化学性能。全细胞电池测试表明有竞争力的排放能力(Q D),第一周期效率(FCE),气体演化和长期循环稳定性。这些表明,全干,零浪费的过程对于产生高质量的NMC凸轮是可行的,同时具有重要的环境和经济优势。该技术在其他阴极化学中的进一步探索和应用可能在开发锂离子电池的可持续和成本效益的国内和全球供应链中发挥关键作用。
在过去的五年中,Lini X Mn Y Co Z O 2的研究已大大转向更高的能量密度。达到如此高密度的一种方法是增加Ni含量,并靶向所谓的“ Ni-Rich”位置,从622起(占NI的60%,占MN和CO的20%),以180 mAh/g的特定容量为180 mAh/g,并倾向于811个组成,以210 mAh/g的材料为210 mAh/g。减少钴含量可以增加能量密度和伏特,并降低电池成本和可持续性。Astrabat在高压(> 4.45 V vs li/li+)和高镍NMC(NMC811)上探讨了NMC622稳定的稳定性。NMC等级是针对项目中开发的氟植物电解质和电池的核心档位设计的,考虑到3D制造细胞所需的墨水喷射打印过程。
锂离子电池(LIB)促进了向更可持续的能源模型的过渡。矛盾的是,当前的高能量阴极使用有机溶剂对环境有害的有机溶剂进行工业处理。在这项工作中,Lini 0.6 MN 0.2 CO 0.2 O 2(NMC622)高能阴极电极在实验室尺度上制备了更环保的水性途径。在制备电极(例如干燥温度,干燥空气或pH缓冲的)方面进行了几个步骤,以增强水上处理的电极的质量。之后,将在实验室尺度开发的食谱上升到半工业电极涂料线,以分析开发的加工条件的生存能力到现实的电极制造环境中。使用基于石墨的阳极作为反电极在全硬币细胞中测试所获得的电极。有趣的是,基于水上加工电极的细胞的循环性能高于有机加工的电极。可以证明,在电化学性能中,可以在环保,更便宜且可实施的电极处理方法上生产高能密度LIB的电极。©2023作者。由IOP Publishing Limited代表电化学学会出版。要获得商业重复使用的许可,请发送电子邮件至permissions@ioppublishing.org。[doi:10.1149/1945-7111/acb10d]这是根据创意共享属性的条款分发的一篇开放访问文章,非商业无衍生物4.0许可(CC BY- NC-ND,http://creativecommons.org/licenses/by-nc-nc-nd/4.0/),如果没有任何原始的工作,则可以在任何原始工作中更改,从而允许在任何媒介中进行过重用,分发,并不更改。
来自大众ID的名义容量为78 AH的大型小袋细胞进行了拆卸和分析,以表征汽车应用中工业规模细胞的艺术状态。将细胞成分彼此分离,几何测量并称重以量化从电极到细胞水平的体积和重量分数。通过扫描电子显微镜(SEM),元素分析和汞孔隙法来表征来自电极的材料样品。半细胞是在验尸后建造的,并在电化学测试中进行了评估。结果揭示了一个叠层电极层的细胞。阴极显示了双模式颗粒分布,其活性材料范围为lini 0.65 mn 0.2 CO 0.15 o 2.15 o 2在NMC622和NMC811之间。无硅石墨用作阳极活动材料。超过75%的细胞质量和超过81%的细胞体积直接用其活性材料促进了268 WH kg -1的特定能量,而在细胞水平下的能量密度为674 WH -1。分别在原始细胞中使用了91%的阳极和93%的阴极。电荷率测试,将阳极鉴定为极限电极。结果为汽车锂离子电池的艺术状态提供了宝贵的见解,并作为科学研究的参考。©2022作者。由IOP Publishing Limited代表电化学学会出版。[doi:10.1149/1945-7111/ac4e11]这是根据Creative Commons Attribution 4.0许可(CC by,http://creativecommons.org/licenses/ by/4.0/)分发的开放式访问文章,如果原始工作适当地引用了原始作品,则可以在任何媒介中不受限制地重复使用工作。
摘要:在电池储能系统(BESS)中部署的锂离子电池(LIB)可以降低发电部门的碳强度并改善环境可持续性。这项研究的目的是使用生命周期评估(LCA)建模,使用来自同行评审的文献以及公共和私人资源的数据,以量化钴的供应链沿供应链沿供应链量化,这是许多类型的LIB中的关键组成部分。该研究试图了解在生命周期阶段的位置,环境影响最高,从而强调了可以提高自由链供应链可持续性的行动。该LCA的系统边界是摇篮到门的。影响评估遵循食谱中点(H)2016。我们假设一个30年的建模期,并在第3年,第7和14年结束时进行了增强,然后在第21年完全替换。在场景中使用了三个炼油厂(中国,加拿大和芬兰),一系列矿石等级(NMC111,NMC532,NMC532,NMC622,NMC811和NCA),以更好地估计其对生命周期的影响。的见解是,根据与矿石等级的逆权法关系,几乎所有途径的影响都会增加;在中国以外的精炼可以将全球变暖潜力(GWP)降低超过12%; GWP对NCA和其他NMC电池化学中使用的钴的影响分别比NMC111低63%和45-74%。按单分析进行分析,海洋和淡水生态毒性是突出的。对于0.3%的矿石等级,加拿大路线的GWP值以58%至65%的速度降低,而芬兰路线的GWP值则下降了71%至76%。统计分析表明,电池中的钴含量是最高的预测因子(R 2 = 0.988),其次是矿石等级(R 2 = 0.966)和精炼位置(R 2 = 0.766),当分别评估相关性时。这里提出的结果指向可以减少环境负担的地区,因此它们有助于政策和投资决策者。
项目 LMO NMC111 LFP NMC532 NMC622 NMC811 NCA 正极活性材料 2.36 1.78 2.06 1.72 1.50 1.27 1.38 炭黑 0.05 0.04 0.04 0.04 0.03 0.07 0.03 石墨 0.80 0.90 1.05 0.88 0.89 0.92 0.90 粘结剂(PVDF) 0.07 0.08 0.06 0.05 0.05 0.09 0.05 铜 0.44 0.33 0.47 0.31 0.29 0.28 0.26 铝 0.24 0.19 0.26 0.18 0.16 0.16 0.15 电解质:LiPF6 0.08 0.06 0.10 0.06 0.06 0.06 0.05 电解质:碳酸乙烯酯 0.21 0.18 0.29 0.16 0.16 0.16 0.15 电解质:碳酸二甲酯 0.21 0.18 0.29 0.16 0.16 0.16 0.15 塑料:聚丙烯 0.04 0.03 0.05 0.04 0.03 0.03 0.02 塑料:聚乙烯 0.01 0.01 0.01 0.01 0.01 0.01 塑料:聚对苯二甲酸乙二醇酯 0.01 0.01 0.01 0.01 0.01 0.01 0.01 电池小计 4.50 3.78 4.70 3.61 3.33 3.21 3.17 组件部件(不含电池) 铜 0.01 0.01 0.01 0.01 0.01 0.01 铝 0.20 0.18 0.23 0.17 0.16 0.16 0.15 塑料:聚乙烯 0.00 0.00 0.00 0.00 0.00 0.00 绝缘材料 0.00 0.00 0.00 0.00 0.00 0.00 0.00 电子部件 0.02 0.02 0.02 0.02 0.02 0.02 0.02 小计: 模块部件(不含电池) 0.22 0.20 0.25 0.19 0.19 0.19 0.18 电池组部件(不含模块)(千克) 铜 0.00 0.00 0.00 0.00 0.00 0.00 铝 0.47 0.44 0.52 0.43 0.42 0.42 0.41 钢 0.03 0.03 0.04 0.03 0.02 0.03 0.02 绝缘材料 0.02 0.01 0.02 0.01 0.01 0.01 冷却剂 0.11 0.12 0.15 0.12 0.12 0.12 0.13 电子部件0.06 0.06 0.06 0.06 0.06 0.06 0.06 小计:包装部件(不含模块) 0.70 0.67 0.79 0.65 0.64 0.64 0.64
