摘要 — 本文介绍了一种完全集成的亚阈值 LC 压控振荡器 (VCO)。还提出了一种设计方法来寻找降低功耗的最佳参数。该方法已应用于设计不同频带的振荡器。此外,自适应体偏置技术已用于改善启动约束并允许对 PVT(工艺、电压和温度)变化具有很高的免疫力。利用所提出的方法,在 0.13μm CMOS 中实现了在 5 GHz ISM(工业、科学和医疗)频段工作的 VCO。它在 0.39V 电源电压下仅消耗 468 μW。这使得满足自主连接对象和物联网应用所需的规格成为可能。测得的振荡频率可以从 5.14 GHz 调整到 5.44 GHz。获得的相位噪声在布局后仿真 (PLS) 中约等于 – 112 dBc/Hz,在测量中约等于 -104.5 dBc/Hz。
MS-多发性硬化NMOSD-神经脊髓炎选择谱系莫加德 - 髓磷脂 - 少突胶质细胞糖蛋白(MOG) - 相关疾病ADEM-急性传播性脑脊髓炎 - 慢性淋巴细胞增强型肿瘤炎症
基于缩放晶体管的抽象CMOS电路通常比采用大面积对应物的电路更容易受到辐射环境中能量颗粒引起的软误差的影响。在本文中,在Schmitt触发器上构建了一个软误差闩锁,它完全用NMOS晶体管实现,并提出了额外的电压助推器(我们称为NST-VB)。为了评估电路的辐射弹性,我们通过分析各种闩锁内部敏感节点的临界电荷来识别最敏感的节点。我们还检查了必需闩锁的线性能量传递(LET),并观察到NST-VB闩锁具有0:386mevcm 2 = mg的提高LET,与0:231mevcm 2 = mg和0:365mevcm 2 = mg 2 = mg 2 = mg 2 = mg 2 = mg,分别为latch and latch and st latch。在过程变化分析中,我们进一步检查了5K蒙特卡洛模拟,以分析设备可变性对我们的设计的影响,并观察到所提出的NST-VB闩锁具有1:96关于ST LATCH的可变性较小的关键电压。此外,NST-VB闩锁的逻辑闪烁概率为48.32%,而ST闩锁的逻辑概率为53.04%。此外,与其他考虑的闩锁相比,计算并评估了拟议闩锁有效性的功率延迟面积比(QPAR)的关键电荷。
尚未确定抽象背景的脑结构改变及其髓磷脂少突胶质细胞糖蛋白抗体疾病(MOGAD)的临床意义。方法我们招募了35个摩根菌,38个水通道蛋白4抗体阳性神经瘤谱谱疾病(AQP4+ NMOSD),37个多发性硬化症(MS)和60个健康对照(HC),他们接受了来自两个中心的多层化脑MRI。脑损伤,整个大脑实质的体积,皮质和皮质下灰质(GM),脑干,小脑和脑白质(WM)(WM)以及扩散措施(分数各向异性,FA和平均扩散性,MD,MD)。通过部分相关评估MRI测量与临床变量之间的关联。逻辑回归以区分Mogad与AQP4+ NMOSD和MS。导致Mogad的结果,19名(54%)患者患有MRI病变,皮质/折(68%)是最常见的位置。mogad和MS比HC显示出较低的皮质和皮质下GM体积,而AQP4+ NMOSD仅显示出皮质GM的体积减少。MS表现出比Mogad和HC较低的小脑体积,FA较低的MD。皮层下GM体积与摩加德中的残疾状态量表呈负相关(r = -0.51; p = 0.004)。MRI和临床措施的组合可以分别与AQP4+ NMOSD和MOGAD与MS相比,可以达到85%和93%的精度。结论摩加德表现出没有严重WM稀疏的皮质和皮质下萎缩。皮层下GM的体积与临床障碍以及MRI和临床措施的组合相关,可以将Mogad与AQP4+ NMOSD和MS分开。
氧化是将晶圆上的硅转化为二氧化硅的过程。硅和氧的化学反应在室温下就开始了,但在形成非常薄的天然氧化膜后停止。为了获得有效的氧化速率,晶圆必须在高温下放入有氧气或水蒸气的炉子中。二氧化硅层用作高质量绝缘体或离子注入的掩模。硅形成高质量二氧化硅的能力是硅仍然是 IC 制造中的主要材料的重要原因。氧化技术 1. 将清洁的晶圆放置在晶圆装载站中,然后将干氮 (N2) 引入腔室。当炉子达到所需温度时,氮气可防止发生氧化。
摘要-测量并建模了 SO1 nMOSFET 中的自热现象。在静态工作条件下,SO1 器件的温升超过 100 K。测量的温升与分析模型的预测非常吻合,并且是硅厚度、埋层氧化物厚度和通道金属接触分离的函数。在动态电路条件下,通道温度远低于根据静态功率耗散预测的温度。这项工作为从静态器件特性数据(温度变化很大)中提取动态操作(在恒定温度下)的器件建模参数奠定了基础。自热不会大大降低 SO1 电路的电迁移可靠性,但可能会影响 SO1 器件的设计,例如,对于特定应用和缩放几何形状,需要更薄的埋层氧化物层。