CMS-A-CC-1-1-TH:数字逻辑核心课程1:理论:04学分:60小时集成电路:(5小时)双极逻辑系列:DTL,TTL Not Gate,TTL NAND NAND NAND GATE,TTL NAND NON GATE,TTL NON GATE,TTL NOR GATE,TTL NON GATE,OPEN COLLECTOR,FANOR,fan-in-fan-in,fan,Out; MOS Logic Families: NMOS, PMOS, CMOS, SSI, MSI, LSI and VLSI classification Number Systems : (5 hours) Weighted and Non-Weighted Codes, positional, Binary, Octal, Hexadecimal, Binary coded Decimal (BCD), Gray Codes, Alphanumeric codes, ASCII, EBCDIC, Conversion of bases, Parity bits, Single Error bit detection and校正代码:锤击代码,固定和浮点算术:加法,减法,乘法和除法。Boolean Algebra: (8 hours) Fundamentals of Boolean Expression: Definition of Switching Algebra, Basic properties of Switching Algebra, Huntington's Postulates, Basic logic gates (AND, OR, NOT), De- Morgan's Theorem, Universal Logic gates (NAND, NOR), Minterm, Maxterm, Minimization of Boolean Functions using K-Map up-to four variables, Two level and multilevel使用逻辑门实现,简化逻辑表达式。组合电路:(20小时)一半加法器,完整加法器(3位),半减法器,全部减法器(3位)以及使用基本逻辑大门(OR和,不是)和通用逻辑门(NAND&NOR)(NAND&NOR),Multibit Adder-ripple-ripp-ripp-cruction-nourter corral and and and and and bcd aDder,bcd adder a adder a adder a dractor bcd adder a adder a dracter,bcd adder a adder,1 and and and and and and and bcd adder a adder a adder a adder,1 1位,2位,3位和4位比较器使用基本逻辑门。数据选择器 - 多工器:扩展(级联),还原,功能实现,通用函数实现,多功能实现。
模拟器和Layout编辑器。研究由于VLSI技术的进步,研究各种问题。使用各种逻辑方法及其局限性研究数字电路。在VLSI技术的背景下突出电路设计问题。课程内容:I单元I实践考虑和VLSI设计介绍,集成电路的大小和复杂性,微电子领域的大小和复杂性,IC生产过程,处理步骤,包装和测试,MOS流程,NMOS流程,CMOS流程,CMOS流程,双极技术,双极技术,混合技术,设计规则和过程参数。单元II设备建模DC模型,小信号模型,MOS模型,高频和小信号的MOSFET模型,短通道设备,子阈值操作,MOSFET的噪声源建模,二极管模型,双极模型,被动组件模型。单元III电路模拟引入,使用SPICE,MOSFET模型,1级大信号模型,2级信号模型,高频模型,高频模型,MOSFET的噪声模型,大信号二极管电流,高频BJT模型,BJT噪声模型,BJT的温度依赖性。单元IV结构化的数字电路和系统随机逻辑和结构化逻辑形式,寄存器存储电路,准静态寄存器单元,敏锐的寄存器单元,微观编码控制器,微处理器设计,收缩期阵列,位序列处理元件,Algotronix。单元V CMOS处理技术基本CMOS技术,基本的N-Well CMOS过程,双浴缸工艺,CMOS ProcessEnhancement,互连和电路元素,布局设计规则,锁存规则,锁存,物理起源,锁存触发,锁存触发,预防预防,内部闩锁预防技术。
modulei:VLSI(10小时)VLSI设计概述的概述:历史透视,VLSI设计方法的概述,VLSI设计流,VLSI设计流,设计层次结构,规则性,模块化和局部性概念,局部性,VLSI设计样式,设计质量,包装技术,包装技术,CAD技术。MOS晶体管理论:金属氧化物半导体(MOS)结构的简介,长通道I-V特征,C-V特性,非线性I-V效应,直流传递特性。moduleii:ASIC(10小时)ASIC设计流:ASIC和SOC概论,ASIC流程概述,功能验证,RTL-GATE水平合成,合成优化技术,前时间验证,静态定时验证,静态定时分析,地板计划,平面图,放置和路线,提取,提取,外布置后,布局后验证,验证,验证。CMOS流程技术:制造过程流程 - 基本步骤,CMOS N-WELL过程,布局设计规则,贴纸图,全custom面膜布局设计。模块:MOS及其类型(10小时)MOS逆变器(静态特征):电阻载荷逆变器,N型16 MOSFET负载的逆变器,CMOS逆变器。MOS逆变器(开关特性和互连效应):延迟时间定义,延迟时间的计算,逻辑努力,具有延迟限制的逆变器设计,互连寄生虫的估计,互连延迟的计算,总线与网络连接(NOC)(NOC),CMOS INVERTERS CMOS INVERTERS的开关电源耗散。模块:CMOS(10小时)组合CMOS逻辑电路:MOS逻辑电路NMOS负载,CMOS逻辑电路,复杂的逻辑回路,CMOS传输门(PASS门),比率,比率,比率,动态和通过透视逻辑。顺序MOS逻辑电路:双稳定元素,SR闩锁电路,时钟闩锁和触发器电路的行为,CMOS D-LATCH和EDGE触发的触发器。正时路径,设置时间并保持时间静态,设置的示例并保持时间静态,设置和保持Slack,时钟偏斜和抖动,时钟,重置和电源分布。内存设计,SRAM,DRAM结构和实现。
第一学期 论文 IV – 电子设备 第一单元 晶体管:JFET、BJT、MOSFET 和 MESFET、不同条件下 IV 特性方程的结构推导、微波器件、隧道二极管、传输电子器件(Gunn 二极管)、雪崩渡越时间器件、Impatt 二极管和参数器件。 第二单元 光子器件:辐射和非辐射跃迁、光吸收、体和。 薄膜光电导器件 (LDR)、二极管光电探测器、太阳能电池(开路电压和短路电流、填充因子)、LED(高频极限、表面和间接复合电流的影响、LED 的运行)、半导体;二极管激光器(激活区域中粒子数反转的条件、光限制因数、光增益和激光的阈值电流。单元 - III 存储设备:只读存储器 (ROM) 和随机存取存储器 (RAM)。ROM 的类型:PROM、EPROM、EEPROM 和 EAPROM、静态和动态 RAM (SRAM 和 DRAM)、SRAM 和 DRAM 的特性。混合存储器:CMOS 和 NMOS 存储器、非易失性 RAM、铁电存储器、电荷耦合器件 (CCD)、存储设备:磁性(FDD 和 HDD)和光学(CD-ROM、CD-R、CD-R/W、DVD)存储设备的几何形状和组织。单元 - IV 电光、磁光和声光效应,与获得这些效应相关的材料特性,这些设备的重要铁电、液晶和聚合物材料,压电、电致伸缩和磁致伸缩效应。这些特性的重要材料及其在传感器和执行器设备、声学延迟线中的应用,压电谐振器和滤波器、高频压电器件-表面、声波器件、单元 - V 太阳能光伏能量转换物理和材料特性基础、光伏能量转换基础:固体的光学特性。直接和间接过渡半导体,吸收系数和载流子带隙复合之间的相互关系。太阳能电池的类型、pn 结太阳能电池、传输方程、电流密度、开路电压和短路电流、单晶硅和非晶硅太阳能电池的简要说明、先进太阳能电池的基本概念,例如串联太阳能电池。固体液体结太阳能电池、半导体的性质、电解质结、光电化学太阳能电池的原理。教科书和参考书:1. SM Sze Willey (1985) 半导体器件 - 物理技术 2. MS tyagi 半导体器件简介 3. M Sayer 和 A Manisingh 物理学和工程学中的测量仪器和实验设计 4. Ajoy Ghatak 和 Thyagrajam 光电子学 5. Millman Halkias:电子设备
背景和目标:本文首次设计并介绍了一种基于电流镜和折叠级联拓扑组合的新型折叠镜 (FM) 跨阻放大器 (TIA) 结构。跨阻放大器级是接收器系统中最关键的构建块。这种新型拓扑基于电流镜拓扑和折叠级联拓扑的组合,采用有源元件设计。其理念是在输入节点使用电流镜拓扑。在所提出的电路中,与许多其他已报道的设计不同,信号电流(而不是电压)被放大直到到达输出节点。由于使用二极管连接的晶体管作为电流镜拓扑的一部分,所提出的 TIA 具有低输入电阻的优势,这有助于隔离主要输入电容。因此,以相当低的功耗实现了 5Gbps 的数据速率。此外,设计的电路仅使用了六个有源元件,占用的芯片面积很小,同时提供 40.6dBΩ 的跨阻抗增益、3.55GHz 频率带宽和 664nArms 输入参考噪声,并且仅消耗 315µW 功率和 1V 电源。结果证明了所提出的电路结构作为低功耗 TIA 级的正确性能。方法:所提出的拓扑基于电流镜拓扑和折叠级联拓扑的组合。使用 Hspice 软件中的 90nm CMOS 技术参数模拟了所提出的折叠镜 TIA 的电路性能。此外,对晶体管的宽度和长度尺寸进行了 200 次蒙特卡罗分析,以分析制造工艺。结果:所提出的 FM TIA 电路提供 40.6dBΩ 跨阻增益和 3.55GHz 频率带宽,同时使用 1V 电源仅消耗 315µW 功率。此外,由于分析通信应用中接收器电路中输出信号的质量至关重要,所提出的 FM TIA 对于 50µA 输入信号的眼图打开约 5mV,而对于 100µA 输入信号,眼图垂直打开约 10mV。因此,可以清楚地显示眼图的垂直和水平开口。此外,跨阻增益的蒙特卡罗分析呈现正态分布,平均值为 40.6dBΩ,标准差为 0.4dBΩ。此外,FM TIA 的输入电阻值在低频时等于 84.4Ω,在 -3dB 频率时达到 75Ω。通过对反馈网络对输入电阻的影响的分析,得出了在没有反馈网络的情况下,输入电阻可达1.4MΩ,由此可见反馈网络的存在对于实现宽带系统的重要性。结论:本文本文介绍了一种基于电流镜拓扑和折叠级联拓扑组合的跨阻放大器,该放大器可放大电流信号并将其转换为输出节点的电压。由于输入节点存在二极管连接的晶体管,因此 TIA 的输入电阻相对较小。此外,六个晶体管中有四个是 PMOS 晶体管,与 NMOS 晶体管相比,它们的热噪声较小。此外,由于前馈网络中未使用无源元件,因此所提出的折叠镜拓扑占用的片上面积相对较小。使用 90nm CMOS 技术参数的结果显示,跨阻增益为 40.6dBΩ,频率带宽为 3.55GHz,输入参考噪声为 664nArms,使用 1 伏电源时功耗仅为 315µW,这表明所提出的电路作为低功耗构建块的性能良好。
以及信息科学与应用国际会议 (ICISA) ⋅ 工程学院模拟与混合信号设计与测试中心委员会成员 ⋅ IEEE 微波理论与技术学报、IEEE 电子器件学报和 IEEE 固态电路杂志的技术审稿人 精选出版物 ⋅ S. Hamedi-Hagh、MY Siddiqui、M. Singh 和 S. Ardalan,“具有恒定回波损耗的低压数字控制 4GHz 可变增益放大器,”微电子选定领域杂志,2012 年。 ⋅ S. Hamedi-Hagh 和 D.-H. Park,“纳米线晶体管在驱动纳米线 LED 中的应用,”电气电子材料学报,第 13 卷,第 2 期,第 73-77 页,2012 年。 ⋅ S. Hamedi-Hagh、M. Tabesh、S. Oh、NJ Park 和 D.-H. Park,“用于近场通信的 UHF CMOS 前端设计”,电气工程与技术杂志,KIEE,第 6 卷,第 6 期,第 817-823 页,2011 年。⋅ Bindal, D. Wickramaratne 和 S. Hamedi-Hagh,“利用硅纳米线技术实现直接序列扩频基带发射器”,纳米电子学和光电子学杂志,第 5 卷,第 1 期,第 1-12 页,2010 年。⋅ Bindal, T. Ogura、N. Ogura 和 S. Hamedi-Hagh,“用于实现带扫描链的现场可编程门阵列架构的硅纳米线晶体管”,纳米电子学和光电子学杂志,第 5 卷,第 1 期,第 1-12 页,2010 年。 4,第 342-352 页,2009 年。⋅ S. Hamedi-Hagh、JC Chung、S. Oh、NJ Park 和 DH Park,“用于 GPS 通信系统的高性能贴片天线的设计”,电气工程与技术杂志,KIEE,第 342-352 卷。 4,第 2 期,282-286 页,2009 年。⋅ S. Hamedi-Hagh 和 A. Bindal,“下一代纳米线放大器的设计和特性”,《VLSI 设计杂志》,文章 ID 190315,2008 年。⋅ JC Chung 和 S. Hamedi-Hagh,“单芯片通信系统的 PCB 匹配电感器和天线的设计”,《国际微波科学与技术杂志》,文章 ID 287627,2008 年。⋅ Hamedi-Hagh 和 A. Bindal,“使用完全耗尽周围栅极晶体管的纳米线 CMOS 放大器的特性”,《纳米电子学与光电子学杂志》,第 4 卷,第 2 期,第 282-286 页,2009 年。 ⋅ S. Hamedi-Hagh、S. Oh、A. Bindal 和 DH Park,“使用纳米线 FET 设计下一代放大器”,电气工程与技术杂志,KIEE,第 3 卷,第 4 期,第 566-570 页,2008 年。⋅ S. Hamedi-Hagh 和 A. Bindal,“用于高速模拟集成电路的硅纳米线场效应晶体管的 SPICE 建模”,IEEE Transactions on Sotoudeh Hamedi-Hagh 第 3/6 页纳米技术,第 7 卷,第 766-775 页,2008 年。⋅ Bindal、S. Hamedi-Hagh 和 T. Ogura,“用于现场可编程门阵列架构应用的硅纳米线技术”,纳米电子学与光电子学杂志,第 3 卷,第 4 期,第 566-570 页,2008 年。 3,第 2 期,第 1-9 页,2008 年。 ⋅ Bindal 和 S. Hamedi-Hagh,“硅纳米线晶体管及其在未来 VLSI 中的应用:16×16 SRAM 的探索性设计研究”,纳米电子学和光电子学杂志,第 2 卷,第 294-303 页,2007 年。⋅ Bindal、A. Naresh、P. Yuan、KK Nguyen 和 S. Hamedi-Hagh,“利用硅纳米线技术设计双功函数 CMOS 晶体管和电路”,IEEE 纳米技术学报,第 6 卷,第 291-302 页,2007 年。⋅ Bindal 和 S. Hamedi-Hagh,“利用硅纳米线技术设计新型脉冲神经元”,纳米技术杂志(物理研究所),第 2 卷,第 301-302 页,2007 年。 18,第 1-12 页,2007 年。⋅ Bindal 和 S. Hamedi-Hagh,“关于节能硅纳米线动态 NMOSFET/PMESFET 逻辑的探索性研究”,IEE 科学、测量和技术会议录,第 1 卷,第 121-130 页,2007 年。⋅ Bindal 和 S. Hamedi-Hagh,“使用硅纳米线技术实现交叉开关架构的静态 NMOS 电路”,半导体、科学和技术杂志(物理研究所),第 22 卷,第 54-64 页,2007 年。⋅ Bindal 和 S. Hamedi-Hagh,“硅纳米线技术对单功函数 CMOS 晶体管和电路设计的影响”,纳米技术杂志(物理研究所),第 17 卷,第 4340-4351 页,2006 年。