摘要:超极化的核磁共振(NMR)提供了一组方法,可以显着解决NMR的灵敏度问题。溶解动态核极化(D-DNP)提供了一种独特而通用的方法,可检测13 C NMR信号,其灵敏度通过几个数量级增强。D-DNP的扩展应用范围现在涵盖了自然13 C丰度时对复杂混合物的分析。但是,在该区域中,它仅限于代谢物提取物。在这里,我们报告了自然丰度时生物氟-urine-的第一个DNP增强的13 C NMR分析,为这种具有挑战性的样本提供了前所未有的分辨率和敏感性。我们还表明,可以通过标准添加程序检索有关多个靶向代谢物的准确定量信息。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
复杂的混合物在化学家的日常生活中至关重要。在分析化学领域尤其是这种情况,在该领域遇到了多种混合物,用于在广泛的领域中应用:药物或医学科学,食品或环境化学,微生物学等。生物学兴趣的混合物(提取物,生物流体等)特别复杂,因为它们包含各种浓度的多种化学结构,从小分子(氨基或有机酸,糖等)到较大的分子结构,例如脂质和蛋白质。天然产品的环境或食物样品或混合物也是如此。在合成化学中,复杂性具有不同的含义。的确,虽然混合物成分的数量更有限,但混合物的复杂性来自反应物,产物和中间体的非常相似的分子结构。同样,在药物科学中,由于存在杂质,其结构接近主要化合物之一,因此看似简单的纯化药物样品可能非常复杂。
结果:吗啡引起MPFC和NAC中许多代谢产物的浓度的显着变化。MPFC和NAC中谷氨酰胺 - 谷氨酸-GABA兴奋性抑制周期的谷氨酰胺成分增加。在MPFC上也观察到谷氨酸的显着增加,但在NAC中却没有观察到。在MPFC和NAC中,磷酸化,能量代谢标记和神经元生存力和能量代谢的N-乙酰天冬氨酸标记显着降低。甘油磷胆碱 +磷酸,细胞膜完整性的标志物在吗啡后的NAC和MPFC中显着增加。NAC中的抗氧化神经量代谢物牛磺酸和谷胱甘肽显着增加。然而,牛磺酸减少,吗啡后MPFC中的谷胱甘肽不变。肌醇,一种神经炎症的标志物,在NAC中显着增加。
固态核磁共振(SSNMR)是一种强大的光谱技术,可以在原子分辨率下为各种样品提供独特的结构信息,从生物大分子到无机材料。可以从偶极重耦实验1,2获得有价值的结构信息,因为它们重新引入了耦合,该耦合与所涉及的旋转之间的距离立方体成反比。因此,这样的实验可以直接深入了解空间接近,甚至允许进行内部距离测量。对于同性核重耦实验,双量器(DQ)重耦方案非常有用,因为可以通过适当的阶段循环抑制来自未耦合旋转的信号(“ DQ滤波器”)。3,4当这种贡献主导频谱并掩盖耦合自旋对中所需的信号时,这是必不可少的,因为例如将核与低自然同位素丰度(Na)相关的情况,例如13 c(1.1%Na)或29 Si(4.7%Na)。5,6这种实验通常患有非常低灵敏度的可行性在近年来大大增加,这是因为通过具有魔法旋转的动态核极化(MAS-DNP)可实现的实质灵敏度增强。7,8有效的激发和DQ相干的重新分配对于成功实施DQ重新耦合实验至关重要。高DQ过滤效率(〜73%)可以从理论上
摘要:为了研究SARS-COV-2感染的全身代谢效应,我们分析了人类血浆中的1 H NMR光谱数据,并与多个血浆细胞因子和趋化因子和趋化因子和趋化因子(并行测量)共同建模。因此,在从SARS-COV-2 RRT-PCR阳性患者(n = 15,具有多个样本时间点)和年龄相匹配的健康对照(N = 34的CORMED-CCR)中,在SARS-COV-2 RRT-PCR阳性患者(n = 15,n = 15,n = 15)中记录的血浆中收集了600 MHz 1 h溶剂抑制的单脉冲,自旋回波和2D J分解光谱。测试了SARS-COV-2阴性的Uenza样临床症状(n = 35)。我们将单脉冲NMR光谱数据与体外诊断研究(IVDR)的信息进行了比较,以了解从原始1D NMR数据中提取的定量脂蛋白促蛋白(112个参数)。所有NMR方法都对使用单个NMR方法的对照组和SARS-COV-2阴性患者对SARS-COV-2阳性患者进行了高度显着歧视,从而给出了有关疾病诱导的现场版本的不同诊断信息。选定患者的纵向轨迹分析表明,在恢复阶段没有可检测的病毒的个体中,代谢恢复是不完整的。我们观察到四个血浆细胞因子簇,它们表达了与多种脂蛋白和代谢产物的复杂统计关系。IL-18,IL-6和IFN-γ与IP-10一起,RANTES与LDL1-4亚构件表现出很强的正相关性,并且与多个HDL亚段的负相关性。包括以下内容:群集1,包括MIP-1β,SDF-1α,IL-22和IL-1α,与多个增加的LDL和VLDL亚隔离相关;群集2,包括IL-10和IL-17A,仅与脂蛋白蛋白相关。群集3,包括IL-8和MCP-1,与多种脂蛋白成反比。总体而言,这些数据表明了与SARS COV-2感染的多级细胞免疫反应与血浆脂蛋白相互作用的多级免疫反应,从而使疾病的强烈和特征性免疫代谢表型相互作用。我们观察到,呼吸道恢复阶段和无测试病毒的一些患者在代谢上仍然是高度异常的,这表明这些技术在评估全身恢复中的新作用。关键字:血浆,Covid-19,Sars-Cov-2,NMR光谱,单脉冲,自旋回波,IVDR,代谢表型,生物标志物,诊断模型,脂蛋白■简介
完全切除肿瘤对于胶质瘤患者的生存至关重要。即使实现了完全切除,切除腔内残留的微尺度组织也有复发的风险。高分辨率魔角旋转核磁共振 (HRMAS NMR) 技术可以利用生物标志物代谢物的峰值强度有效区分健康和恶性组织。该方法快速、灵敏,可以处理小样本和未处理的样本,非常适合在手术期间进行实时分析。然而,只能对已知肿瘤生物标志物的存在进行有针对性的分析,这需要在手术过程中有具有化学背景的技术人员和了解肿瘤代谢的病理学家在场。在这里,我们展示了我们可以准确地实时执行此分析,并且可以使用机器学习以非目标方式分析全光谱。我们研究了一个新的大型胶质瘤和对照样本 (n = 565) 的 HRMAS NMR 数据集,这些样本也标有定量病理分析。我们的结果表明,基于随机森林的方法可以准确有效地区分肿瘤细胞和对照样本,中位 AUC 为 85.6%,AUPR 为 93.4%。我们还表明,我们可以进一步区分良性和恶性样本,中位 AUC 为 87.1%,AUPR 为 96.1%。我们分析特征(峰值)对分类的重要性,以解释分类器的结果。我们验证了已知的恶性肿瘤生物标志物(如肌酸和 2-羟基戊二酸)在区分肿瘤和正常细胞方面发挥重要作用,并提出了新的生物标志物区域。代码发布在 http://github.com/ciceklab/ HRMAS_NC 。
我们都读过或听说过与模型铁路有关的“调车场”。调车场只不过是另一种形式的集散场,尽管其物理构成和操作可能非常不同。调车场的目的类似于集散场,是为了能够将车厢或整列火车移入或移出您的布局,以代表前往未建模位置的收益设备或从遥远的地方接收车厢。我在各种布局上看到的大多数调车场都是将车厢发送到布局上的指定区域。然后通过 0-5-0 方法将它们物理移除,并更换一组新的车厢,前往布局上的各个位置和行业。好的,现在我们对调车场有了很好的了解,让我们看看这个重要的操作功能是如何设计和构建的,以满足我的 Hill Valley 铁路的运营需求。
固态光化学描述了对多种工业的重要性驱动反应的广泛。紫外线固化的聚合已在生产中司空见惯,用于打印,涂料和添加剂制造。1光降解是食品科学,药物,聚合物,太阳能电池和空间材料的障碍。2 - 5光电半导体被用作异质光催化剂的异质光催化剂,以提高各种反应的效率,6长期用作光发射二极管和光伏特细胞。7 - 9这些应用都是一个积极的科学研究领域,因为社区正在寻找更绿色的过程和能源解决方案。光化学在光合作用,皮肤损伤和视力等生物系统中也很普遍。10
RicardaTörner将于2025年加入UZH,将在本质上的研究中增加解决方案