工程背景和上下文 该计划的工程测量部分(质量;力;动态;尺寸测量)由于 NMS 计划组合的重组而经历了重新调整,其中三个项目转移到新的 NMS 创新研发计划,两个项目转移到 NMS 探路者计划,此外 NPL 科学战略也发生了变化。与动态测量、先进传感器计量以及(非)多孔材料的质量和密度相关的项目被纳入创新研发计划,而与瓦特天平和阿伏伽德罗对千克的重新定义相关的项目则被纳入探路者计划。进一步的变化反映了 NPL 科学战略提案,该提案由 NMS 批准(在与测量咨询委员会 - MAC 协商后),其中撤回了对某些科学领域的资助,以便集中资源,确保在预算减少的情况下从 NMS 组合中获得最大影响。主要变化是取消了对硬度、真空、静压研究和扭矩测量的资助。回顾2005-2008年工程计划,该计划的组成如图1所示。
纳米技术已经达到一定的成熟度和市场渗透水平,需要在立法方面进行纳米方面的专门变革,并在立法领域之间进行协调,例如 2020 年 1 月生效的纳米材料 (NM) 的 REACH 修正案。因此,作为全球努力优化纳米安全并将其融入产品设计流程的一部分,通过 Safe(r)-by-Design (SbD) 概念,现在是评估 NM 风险管理的组成部分和监管边界以及相关方法和工具的适当时机。本文概述了 NM 风险管理的最新进展,并为制定和实施有效、可信、透明和实用的 NM 风险管理框架奠定了理论基础。拟议的框架能够不断整合不断发展的科学状态,利用相邻学科的最佳实践,并促进对纳米安全治理的重新思考,以满足未来的需求。为了实现并实施这一框架,目前正在为 NM 建立一个专门的、基于科学的风险治理委员会 (RGC)。该框架将为独立 NM 的风险管理提供工具包,并整合所有利益相关者的需求和观点。考虑到未来欧洲和全球风险研究的基础,还设想将该框架扩展到其他相关的先进材料和新兴技术。
背景和目的:安全有效的药物输送对于癌症治疗至关重要,而传统方法几乎无法实现这一点。在所有类型的癌症中,皮肤黑色素瘤以其侵袭性转移能力和前所未有的高致死率而闻名,限制了整体治疗效果。在这里,我们重点关注不同类型的纳米材料 (NM) 及其针对黑色素瘤的药物输送应用。实验方法:使用 Scopus 和 PubMed 等搜索引擎评估了所有相关出版物,包括研究论文、评论、章节和专利,截至 2023 年 8 月底。搜索中使用的关键词是:纳米材料、黑色素瘤、黑色素瘤的药物输送途径和基于纳米材料的药物输送系统 (DDS)。本评论引用的 234 篇出版物中的大多数来自最近五年。主要结果:讨论了各种 NMs 治疗黑色素瘤的最新进展和作用机制,包括无机金属和碳基 NMs、有机聚合物和脂质基 NMs 以及细胞衍生囊泡。我们还重点介绍了不同 NMs 在黑色素瘤治疗治疗剂输送中的应用。此外,还简要讨论了皮肤和黑色素瘤、黑色素瘤的基因突变和途径、常规治疗方案以及治疗剂的输送途径。结论:最近建立的实验室开发的基于 NM 的 DDS 很少。本综述的结果将为基于 NM 的 DDS 的工业规模开发铺平道路,并有助于更好地管理皮肤黑色素瘤。
可保证金场外交易股票清单由美国场外交易 (OTC) 股票组成,这些股票已被董事会确定为场外保证金股票,自 1998 年 5 月 11 日起须遵守 T 条例第 220.11 节《经纪商和交易商信用》的规定。它还包括所有被指定为全国市场系统 (NMS) 证券的场外交易股票。在董事会季度出版物之间可能会添加其他 NMS 证券;这些证券在被指定为 NMS 证券后立即可保证金。这些证券的名称可在全国证券交易商协会和美国证券交易委员会处查阅。此清单取代了 1998 年 2 月 9 日发布的先前可保证金场外交易股票清单。
在 PECS/AM/NMS 中寻找合作伙伴 → 网络搜索和 ESA 匹配 → 联系该国的国家事务官员(见最后一张幻灯片)→ 参加明年 5 月在 ESTEC 举行的 PECS/AM/NMS 会议 → 特定主题的 ESA 会议(例如机制会议、生命星球研讨会...)→ 您的技术官员 → 联系该国的工业协调员(EE、RO、LV 以及即将推出的 LT 和 BG)
深脑刺激(DBS)是帕金森氏病(PD)和Essential-Tremor(ET)的已建立疗法。在自适应DBS(ADB)系统中,刺激参数随着神经信号的函数的在线调整可能会改善治疗效率并减少副作用。最新的ADBS系统使用源自神经信号的症状替代物(NMS如此称呼的神经标记(NMS)),并在患者组水平上确定,并假设症状和NMS的平稳性控制策略。我们旨在通过(1)一种数据驱动的方法来改进这些ADBS系统,用于识别患者和会议的NMS以及(2)使用短期非平稳动态的控制策略应对。两个构建块的实现如下:(1)数据驱动的NM基于机器学习模型,该模型估计了电视学信号的震颤强度。(2)控制策略解释了震颤统计的局部变异性。我们对三名长期植入ET患者进行的研究等于五个在线课程。从加速度计数据中量化的震颤表明,症状抑制至少等效于在4种在线测试中的3个在3个在线测试中的连续DBS策略,同时大大降低了净刺激(至少24%)。在剩余的在线测试中,症状抑制与连续策略或无治疗条件的抑制作用没有显着差异。我们引入了ET的新型ADB系统。是基于(1)机器学习模型的第一个ADBS系统,用于识别会话特定的NMS,以及(2)具有短期非平稳动力学的控制策略应对。我们展示了ADB对ET的适用性,这为其在较大的患者人群中进一步研究打开了大门。
本文报告了基于β-GA 2 O 3纳米膜(NM)的柔性光电探测器(PDS)及其光电特性在弯曲条件下的证明。柔性β-GA 2 O 3 nm PDS在弯曲条件下表现出可靠的太阳灯光检测。有趣的是,在弯曲条件下观察到了最大太阳盲图的波长略有变化。为了研究这种峰值变化的原因,测量了不同应变条件下β-GA 2 O 3 nms的光学特性,并揭示了由于β-GA 2 O 3 Nms中纳米级裂纹而导致的折射指数,灭绝系数和应变的β-GA 2 O 3 Nms的带隙。多物理学模拟和严密功能理论的计算结果的β-GA 2 O 3 nms表明,传导带的最小值和价带的最大状态几乎与施加的单轴菌株线性移动,从而导致β-GA 2 O 3 Nm的光学性质变化。我们还发现,β-GA 2 O 3 nm中的纳米间隙在弯曲条件下在弯曲条件下增强β-GA 2 O 3 nm PD的光自抑制至关重要,这是由于二次光吸收的光吸收了纳米间隙表面的光。因此,这项研究提供了一条可行的途径,以实现高性能灵活的光电探测器,这是将来的灵活传感器系统中必不可少的组件之一。
人类肺器官(HLOS)越来越多地用于建模发育和传染病,但是它们概括功能性肺组织对纳米材料(NM)暴露的能力尚未证明。在这里,我们建立了一个肺器官暴露模型,该模型利用微注射将NMS呈现到器官的腔内。我们的模型可确保顶端肺上皮的有效,可再现和可控制的暴露,从而模仿现实生活中的人类暴露情况。通过比较两个经过良好研究的基于碳的NM,氧化石墨烯片(GO)和多壁碳纳米管(MWCNT)的影响,我们验证了肺类器官作为预测肺NM驱动反应的工具。与已建立的体内数据一致,我们证明了MWCNT(但不进行)对肺类器官产生不利影响,从而导致纤维化表型。我们的发现揭示了HLOS对NMS危害评估的能力和适用性,与备受追捧的3RS(动物研究更换,减少,改进)框架保持一致。
为确保军队能够轻松配置和管理所有固定和移动网络部署,ST Engineering iDirect 的 iVantage (NMS) 允许从单一位置进行集中控制,使非技术人员能够轻松快速地在现场部署新站点。随着移动遥控器在各种转发器和卫星上的网络之间移动,ST Engineering iDirect 的全球 NMS 使军事组织能够监控所有部署遥控器的运行状况和位置,识别和修复性能下降,并排除可能出现的任何故障。
摘要 量子密钥分发 (QKD) 为双方安全地分发密钥提供了一种有效的解决方案。然而,QKD 本身容易受到拒绝服务 (DoS) 攻击。需要一种灵活且有弹性的 QKD 网络微电网 (NM) 架构,但目前尚不存在。在本文中,我们介绍了一种可编程量子 NM (PQNM) 架构。这是一个新颖的框架,集成了 QKD 和软件定义网络 (SDN) 技术,能够实现可扩展、可编程、量子工程和超弹性的 NM。这些 PQNM 配备了软件定义的自适应后处理方法、两级密钥池共享策略和支持 SDN 的事件触发通信方案,通过可编程后处理和 QKD 链路之间的安全密钥共享来减轻 DoS 攻击的影响,这是现有技术无法实现的功能。通过全面的评估,我们验证了 PQNM 的优势,并证明了所提出的策略在各种情况下的有效性。大量的研究结果为在实践中构建支持 QKD 的 NM 提供了富有洞察力的资源。