摘要:噪声污染,即所有类型的污染中最少的污染都被大多数人忽略了,这些人可以回收并变成电源。噪声就像阳光一样有效的电力来源。噪声(声音)能量可以转换为可行的电力来源。有多种声音来源没有被忽略,其中之一是行业产生的噪音。声波(噪声污染)转化为能量证明噪声可以作为替代能源。这项研究旨在设计和开发具有将噪声转换为电力并将其存储以进行紧急使用的设备。具体目标如下:确定根据硬件和软件开发基于噪声污染的电力库所需的组件;描述基于噪声污染的电力库电路和设计体系结构;确定要收获的噪音或分贝以创造力量;将噪声作为电源来处理噪声;并确定基于噪声污染的电力将产生电压,电流和电阻;在使用不同的移动小工具进行测试时,确定基于噪声污染的电力组的效率。
如果我们把战略噪声图、受影响人群的分布和所有人的总烦恼分数计算成一个数字,我们可能会问这个最终结果的不确定性。从城市的数字模型到最终结果,需要进行数百万次复杂的计算,这只有在现实中才有可能,因为我们在建模和计算中接受了很多近似值甚至假设。在这种情况下,整个过程可以通过更详细的建模和计算得到改进,但时间或财务预算定义了不可逾越的限制,因此需要非常彻底地平衡每个步骤的准确性,以尽量减少最终结果的不确定性。如果我们在对结果贡献很小的步骤中投入计算时间和其他有限的资源,那么这个结果的不确定性就会增加(始终考虑到有限的预算定义了限制)。
噪音研究更新 基准年,即 CY18,有 54 架 C-130 交付。根据需求,90% 的预期需求将等于或低于 75 架飞机(第 90 个百分位)。不采取行动替代方案使用相同的基准,但删除了 E-8C 并添加了 E-11A,正如任务转型环境评估的拟议行动中所述。作为此更新的一部分,在基准中添加了新的 C-130 发动机测试(即功能测试)位置。然后扩大了所有 C-130 活动以应对 39% 的增长。
免责声明 尽管我们已尽一切努力确保本出版物中材料的准确性,但无法保证完全准确。对于任何人因本出版物中的内容而采取或不采取行动所造成的(或声称造成的)部分或全部损失或损害,环境保护局和作者均不承担任何责任。 只要注明出处,即可复制本出版物的全部或部分内容,无需进一步许可。 战略噪声测绘指导说明 针对 2006 年环境噪声条例 爱尔兰环境保护局发布 致谢 环境保护局谨感谢 Acustica 和 AWN Consulting 在编撰本指导说明方面做出的重大贡献。
如今,无人水下滑翔机在海洋探索中发挥着重要作用,可获取有关水下环境的宝贵信息。水下滑翔机通过改变浮力来移动。浮力变化系统是决定机器人运动精度、潜水能力、声学特性、可靠性和资源的关键系统。这些参数由浮力变化系统内部的工作过程决定,特别是由发生的压力脉动决定。众所周知,压力脉动会引起振动,从而产生空气噪声。滑翔机中可实现五种类型的浮力变化系统。本文从理论上考虑了所有这些系统。理论分析显示了它们的优缺点,并允许选择最有效的系统。所选的浮力变化系统由液压泵、电动机、阀门和蓄能器组成。在滑翔机的几种操作模式下对浮力变化系统进行了实验研究:潜水模式、上升模式和紧急上升模式。半自然试验台用于实验测试。六个振动加速度传感器用于振动估计。它们安装在系统的每个组件上。通过 LMS 硬件和软件设备对获得的数据进行采样。结果使我们能够通过不同操作状态下压力脉动引起的振动加速度和噪声来研究滑翔机浮力变化系统的振动声学效率。关键词:水下滑翔机、半自然试验台、压力脉动、振动、生态学、噪声影响
AD 工艺涉及连续的生物过程,因此加工厂一旦建成并投入使用,将全天候运行。但是,就车辆进出场地而言,场地的正常运营时间为周一至周日 07:00 至 19:00,从而避免夜间运营。规划许可将场地的交付或发货时间限制在每天 07:00 至 20:00 之间。除了上述时间外,在收获高峰期(每年约 4 周),作物的交付时间可以从 07:00 到 22:00 进行,以便作物在收获后进口。
齿轮噪声与振动——文献综述 Mats Åkerblom mats.akerblom@volvo.com Volvo Construction Equipment Components AB SE–631 85 瑞典埃斯基尔斯蒂纳 摘要 本文是对齿轮噪声与振动文献的综述。 它分为三个部分:“传动误差”、“动态模型”和“噪声与振动测量”。 传动误差 (TE) 被认为是齿轮噪声和振动的重要激励机制。 传动误差的定义是“输出齿轮的实际位置与齿轮传动完全共轭时其所处位置之间的差”。 由齿轮、轴、轴承和变速箱壳体组成的系统的动态模型对于理解和预测变速箱的动态行为很有用。 在通过实验研究齿轮噪声时,噪声和振动测量以及信号分析是重要的工具,因为齿轮会在特定频率下产生噪声,这与齿数和齿轮的转速有关。关键词:齿轮,噪声,振动,传动误差,动态模型。
普遍认为,在给定噪音水平下,当地社区会认为飞机比其他噪音源更令人烦恼 [2]。我们的文献综述还发现,不同的研究报告了“社区中飞机噪音烦恼持续增加”:对于相同噪音水平,这些研究记录了比 10 年前更多的烦恼 [6]。烦恼增加的原因尚不清楚:部分研究界将其归因于飞机起降次数 [7] 和机队组成的“变化率”(例如在 1 年或 5 年的范围内 [8] [9]),而其他人则报告了对飞机态度的普遍变化以及非声学因素的权重增加 [10]。《抵达评论》 [5] 中详细描述了飞机高度对社区感知的影响,并在其他地方非常简要地提到过 [11] [12],这表明视觉和声学因素共同起作用。这种跨模态相互作用对声学判断的影响在安静区域的背景下得到了强调 [13],但在飞机情况下其存在性需要进一步了解。本研究是首次尝试解决社区感知的这一方面。
全球 90% 以上的贸易是通过海上运输进行的。空气污染、温室气体 (GHG) 排放和水下辐射噪音是国际航运的意外副产品。航运业意识到了提高能源效率和减少温室气体排放的必要性。2018 年,国际海事组织 (IMO) 通过了一项关于减少船舶温室气体排放的初步战略 1 。这证实了国际海事组织致力于减少国际航运温室气体排放的承诺,并紧急致力于在本世纪尽快逐步淘汰这些排放。比利时政府希望通过“可持续航运计划”(转载于本报告附件 B)帮助船东迈向航运业更加环保、零二氧化碳和数字化的未来。该计划符合到 2050 年将航运业的二氧化碳 (CO 2 ) 排放量至少减少一半的国际目标。除温室气体外,国际海事组织还采取逐步减少氮氧化物 (NO x )、硫氧化物 (SO x ) 和颗粒物 (PM) 的措施,以防止船舶造成空气污染 2 。为帮助保护海上野生生物,国际海事组织的工作包括减少船舶的水下噪音 3 。2014 年,国际海事组织发布了减少商业航运水下噪音的非强制性指南,以解决对海洋生物的不利影响 [IMO MEPC,2014]。理想情况下,采取的减少温室气体排放的措施也会减少水下噪音,但两者之间的联系并未得到证实
asha.org › 出版物 › 专着28 1992 年 11 月 15 日 — 1992 年 11 月 15 日 为了提高 PBS 哈佛名单的可靠性,Hood 和 Poole (1977) 指出……由 Klumpp 和 开发的航空母舰韦伯斯特。