在巴西电基质(2022年为8%)和全球(2021年的61.5%)中存在热电厂。燃烧发动机用于在大多数热电厂中驱动发电机,作为大气发射的主要来源。本研究旨在提出一个模型,允许预先选择这些发动机,并确定最适合获得环境许可的建议标准的模型。使用十二个发动机模型的数据用于评估研究的替代方案。通过R计划利用了计算资源来对数据进行统计分析。与屏幕视图软件的模拟可以调查大气分散场景。研究表明,分散与以下变量具有显着相关性:发射速率,显着性为0.60,烟囱高度为-0.57。It was possible to con- clude that for wind speeds equal to or greater than the local annual average of 2.1 m/s, a distance of 1800 meters to the community (location of the thermal power plant), a flue gas exit speed of 35 m/s, and the analyzed engine standards and design, engines with a NOx emission rate of up to 3.0 g/kWh showed good dispersion values, below 200 mg/Nm 3 of NOx, the standard required by巴西环境立法。因此,只有四个引擎模型符合此条件。
自 1970 年代以来,人们就开始使用水和蒸汽喷射来控制燃气轮机的 NOx 排放。在燃气轮机内部,燃料富集区会产生高火焰温度,这是燃料和空气同时混合并随后燃烧的结果。将水或蒸汽注入燃烧室的火焰区域可形成散热器,从而降低燃烧区温度并减少热 NOx 的形成。如报告前面所述,随着燃烧区温度的降低,NOx 的产生量会成倍减少。此过程中使用的水必须是高质量的(例如软化水),以防止涡轮机中出现沉积物和腐蚀。虽然许多联合循环设施可能在现场设有现有的软化水处理设施,但现有的简单循环设施通常没有。在这些情况下,可以选择建造或租用新的水处理设备,或将高质量的水运送到现场。
1 99% 的传感器将处于最小-最大公差范围内。典型公差是指≥100 个传感器的分布平均值。2 当实际湿度值作为传感器的输入时,湿度补偿(参见第 3.2 节原始信号测量)。3 以刻度为单位的信号与传感层电阻的对数成正比。4 根据应用说明 SGP41 - 测试指南使用校准和测试序列进行评估。5 检测限定义为在给定浓度设定点下获得比噪声高 3 倍的原始信号变化所需的最小浓度变化。6 在室内环境中模拟 10 年寿命的参数测试。测试条件:在 250 ppm 十甲基环戊硅氧烷 (D5) 中连续运行 200 小时。7 500 ppb 的乙醇浓度相当于应用环境中存在的典型 VOC 背景,例如,典型的 OEM 设备。
使用氢气替代化石燃料是许多国家脱碳战略的重要组成部分,也是大多数净零计划的主要技术组成部分(例如英国气候变化委员会,2019 年;欧洲绿色协议,2020 年)。1,2 预计 2020 年代氢气作为燃料的使用将非常迅速地增加,相关行业将获得重要的政治支持(英国首相鲍里斯·约翰逊,《金融时报》2020 年 11 月 18 日)。3 使用氢燃料有两种主要途径,通过电化学燃料电池(直接产生直流电)或在热锅炉或发动机中燃烧。至少在英国,一个假设是,未来大部分氢气将被燃烧——在工业规模、家庭环境中和一些越野内燃机应用中。
自 20 世纪 70 年代初以来,选择性催化还原 (SCR) 已应用于固定源、化石燃料燃烧装置的排放控制,目前已在日本、欧洲和美国投入使用。该技术已应用于大型(2.5 亿美元英热单位/小时 (MMbtu/hr))公用事业和工业锅炉、工艺加热器和联合循环燃气轮机。SCR 在其他燃烧设备和工艺中的应用有限,例如简单循环燃气轮机、固定往复式内燃机、硝酸厂和钢厂退火炉 [4]。在美国,SCR 主要应用于燃煤和天然气发电锅炉,规模从 250 到 8,000 MMbtu/小时(25 到 800 兆瓦 (MW))。SCR 可以作为独立的 NOx 控制装置使用,也可以与其他技术(如燃烧控制)一起使用。SCR 系统很少出现运行或维护问题 [1]。
迈向全面自动化的下一步是开发机器学习,使其能够为更具挑战性的控制任务提供建议。为此,该技术对当前和未来 NOx 浓度的预测必须与过程控制系统相结合。成功集成到现有系统中需要对特定单元的流程和操作有专业知识。有了足够的历史数据,人工智能可以控制和稳定工厂的运行,准确推荐成功的行动,并考虑薄弱因素和隐藏的依赖关系。这些能力意味着该技术甚至可以用于复杂、不太为人所知的过程,或者物理模型难以创建和维护的情况。
5.0 NO 控制技术 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11 5.1.5 湿式控制对 CO 和 HC 排放的影响 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-36 5.2.2 贫燃预混燃烧器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-73 5.4 与 SCR 结合使用的控制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-87 5.8 催化燃烧 . ...
5.0 无控制技术 ...............5-1 x 5.1 湿式控制 .................5-5 5.1.1 过程描述 ........5-5 5.1.2 湿控制的适用性 ....5-8 5.1.3 影响湿式控制性能的因素 ...........5-8 5.1.4 使用 x 湿式控制可实现的 NO 排放水平 ...........5-11 5.1.5 湿式控制对 CO 和 HC 排放的影响 ............5-28 5.1.6 湿式控制对燃气轮机性能的影响 ............5-33 5.1.7 湿式控制对燃气轮机维护的影响 ............5-33 5.2 燃烧控制 ............5-36 5.2.1 稀薄燃烧和减少燃烧室停留时间 ...........5-36 5.2.2 贫油预混燃烧室 ......5-38 5.2.3 浓/熄火/贫油燃烧 .....5-59 5.3 选择性催化还原 .......5-63 5.3.1 流程描述 ..........5-63 5.3.2 SCR 对燃气轮机的适用性 5-65 5.3.3 影响 SCR 性能的因素 ..5-72 5.3.4 使用 SCR 可实现的 NO 减排 x 效率 .......5-73 5.3.5 SCR 的处置注意事项 ...5-73 5.4 与 SCR 结合使用的控件 ...5-74 5.5 在 HRSG 应用中添加管道燃烧器的影响 ..............5-77 5.6 替代燃料 ............5-83 5.6.1 煤制气 ...。。。。。。。5-83 5.6.2 甲醇。。。。。。。。。。。。。。5-84 5.7 选择性非催化还原 ......5-87 5.8 催化燃烧 ...........5-88 5.8.1 过程描述 .........5-88 5.8.2 适用性 ...........5-88 5.8.3 开发状态 .........5-88 5.9 海上石油平台应用 .....5-91 5.10 第 5 章参考资料 ......。。。5-92