撒谎 - 做出欺骗意图的不真实陈述的行为[74] - 长期以来一直是道德哲学中的重要主题[8,35,55]。许多学者都研究了撒谎 - 在哪种情况下,可以接受[13,63,71],对撒谎的看法如何在文化和年龄之间有所不同[15,37]等。但是,从叙事构建,讲故事的角度,撒谎和欺骗可以用作探索和增强写作的主题主题[67,80]。谎言的角色可以为故事增添一定程度的歧义和道德复杂性[83,121];这种欺骗可以帮助表征作品的角色,增加戏剧化和阴谋的水平,并增强读者从故事中脱颖而出的隐喻含义。扩展了在叙事写作中使用欺骗的概念,视频游戏是一种越来越多地用于讲述故事和传达叙事的媒介,以使人们发笑,哭泣和思考[10,45]。与传统的讲故事形式(例如书籍或电影)相反,游戏为玩家提供了高度的互动性,可以控制他们的选择和决定[59]。在这种体验中,游戏可以通过其虚拟代理提供一种社交互动形式 - 不可玩的字符(NPC)[1,5]。与NPC的互动是游戏的重要组成部分,因为它们会影响玩家感到[112],提供情感关系和依恋的车辆[14]的现实主义和沉浸度[14],并增加了玩家从游戏中带走的欣赏和意义的感觉[45]。游戏中互动性的负担能力为玩家提供了代理机构,他们想要移动的方式,他们想要如何互动等。我们考虑了这样一个问题,即这种玩家驱动的互动如何影响并受到信任和启示方面的影响,尤其是NPC和玩家之间的互动。,有着相对稀缺的工作,着眼于玩家如何看待NPC中的真实性,谎言和欺骗。由于自然主义的NPC对话和互动的快速研究改善了越来越重要的差距(例如通过AI方法[72,84])与他们以前的有限和僵化的行为形成对比[60]。我们考虑以下研究问题,从最初启动游戏到游戏后的外卖阶段,也可以构成游戏玩法体验的不同阶段。
简单的“基于网格的寻路”,其中地形被映射到均匀正方形的刚性网格上,并将寻路算法(例如 A* 或 IDA*(图形遍历))应用于网格。[8][9][10] 有些游戏不只是使用刚性网格,而是使用不规则多边形,并从 NPC 可以步行到的地图区域组装导航网格。[8][11] 作为第三种方法,开发人员有时可以方便地手动选择 NPC 应该用来导航的“路径点”;但代价是,这样的路径点可能会产生不自然的运动。此外,在复杂环境中,路径点的表现往往比导航网格差。[12][13] 除了静态寻路之外,导航是游戏 AI 的一个子领域,专注于让 NPC 能够在动态环境中导航,找到通往目标的路径,同时避免与其他实体发生碰撞。相比改进游戏 AI 以妥善解决虚拟环境中的难题,修改场景使其更易于处理往往更具成本效益。如果寻路因特定障碍物而陷入困境,开发人员可能最终会移动或删除该障碍物。[14] 2. 文献综述
摘要:缺乏电力是阻止国家发展的最严重的问题之一。混合可再生能源系统(HRES)在减少此问题方面起着至关重要的作用。这项研究的主要目标是使用多个能源资源(Homer)Pro软件的非主导分类遗传算法(NSGA)-II和混合优化的优化,以降低净现在成本(NPC),能源成本(COE)和CO 2的CO 2拟议的电力系统排放。五个案例被认为是了解孟加拉国库特布迪亚岛的最佳HRES系统,并分析了该系统的技术可行性和经济潜力。为了证明建议策略的效率,比较了两种方法的最佳案例结果。该研究的最佳解决方案还经过敏感性分析,以考虑年度风速,太阳辐射和燃油成本中的波动。根据数据,优化的PV/风电/电池/DG系统(711,943美元)的NPC低于其他情况。通过NSGA-II技术获得的NPC比基于荷马的系统低2.69%。
受影响的产物积聚在溶酶体中,导致溶酶体功能障碍和随之而来的疾病。NPC1和NPC2是溶酶体途径的一部分,用于疏散胆固醇,该胆固醇因内吞作用所吸收的脂蛋白分解而产生(图1A)。如果该途径受到NPC1或NPC2突变的损害,则胆固醇会积聚在溶酶体中,从而导致NPC。目前尚无对NPC的有效治疗方法。我基于绕过NPC1/2途径的溶酶体靶向融合的简单但新颖的NPC治疗方法(图1B)。简要地,NPC2易于表达和净化,并在添加到细胞中时有效地靶向溶酶体。通过将NPC2结合到无毒的胆固醇结合循环寡糖(例如β-环糊精(B CD))中,我们将产生一种融合,与单独的NPC2不同,可以将胆固醇直接捐赠给溶酶体膜,从而校正Lysosomal sostemos,从而纠正Lysosomal sostemot(Fig.1b)。有两年的资金,我建议实现以下目的:1)生成一组NPC2-B CD共轭物,其B CD部分变化以及NPC2和B CD之间的连接链接器; 2)确认靶向NPC2-B CD偶联物与溶酶体的靶向; 3)测试NPC2-B CD偶联物对NPC患者成纤维细胞中溶酶体胆固醇积累的影响,以确定它们是否以及如何促进胆固醇流动性。
图1:IPSC衍生的NPC的产生,中风诱导和移植。(a)左:IPSC派生的NPC的生成。右:iPSCS和NPCS(通道7)染色为Nanog和Nestin。比例尺:50UM。(b)左:NPC的神经分化。右:分化后的D26(上排)分化的NPC,对βIII-微管蛋白,S100β和DAPI染色。比例尺:50UM。(c)实验设计的示意图。(d)通过激光多普勒成像(LDI)获得的脑灌注水平。(e)右半球的相对血液灌注与中风诱导后立即记录的基线(急性)和牺牲前(43 dpi)相比。(f)中风梗塞大小的定量。左:相对于勃雷格玛(MM),针对前后(A-P)距离绘制的病变区域。右:两个治疗组的病变体积(mm 3)的箱形图。(g)描绘中风梗塞大小的3-D小鼠脑模型的示意图。比例尺:2mm。(H)使用生物发光成像进行NPC移植后细胞存活的纵向分析。(i)生物发光信号强度表示为35天的SR X10 6的每秒3个光子数量。显示的显着性水平是指天之间的比较。(J)示意图和免疫荧光表示,描绘了移植核(深蓝色)和移植物周围(浅蓝色)。hunu用于可视化移植细胞。比例尺:1mm。比例尺:2mm。(k)脑切片对hunu染色,以前到后验(A-P)顺序排列。(l)量化移植物核心和移植物周围面积。左:相对于前核(MM),绘制在前后(A-P)距离的移植面积(mm 2)。右:移植动物的平均移植体积(mm 3)的箱形图。数据显示为平均分布,其中红点表示平均值。框图表示数据的25%至75%四分位数。箱形图:图中的每个点代表一种动物。线图被绘制为平均值±SEM。使用成对的t检验(基线与中风)或未配对的t检验(车辆与NPC)评估平均差异的显着性。在E-I中,每组n = 11只小鼠;在L,每组n = 9只动物。星号表示显着性: *p <0.05。
摘要 微生物成分对胎儿大脑有一系列直接影响。然而,人们对介导这些影响的细胞靶点和分子机制知之甚少。神经祖细胞 (NPC) 控制大脑的大小和结构,了解调节 NPC 的机制对于理解大脑发育障碍至关重要。我们发现心室放射状胶质细胞 (vRG),即主要的 NPC,是抗生素治疗产妇肺炎期间产生的细菌细胞壁 (BCW) 的靶点。BCW 通过缩短细胞周期和增加自我更新来增强 vRG 的增殖潜力。扩增的 vRG 繁殖以增加所有皮质层的神经元输出。值得注意的是,识别 BCW 的 Toll 样受体 2 (TLR2) 位于 vRG 中初级纤毛的底部,BCW-TLR2 相互作用抑制纤毛发生,导致 Hedgehog (HH) 信号的解除抑制和 vRG 扩增。我们还表明,TLR6 是 TLR2 在此过程中的重要伙伴。令人惊讶的是,在健康条件下,仅 TLR6 就需要设定皮质神经元的数量。这些发现表明,来自 TLR 的内源性信号在新皮质正常发育过程中抑制皮质扩张,而 BCW 通过 TLR2/纤毛/HH 信号轴改变大脑结构和功能来拮抗该信号。
2024 年 2 月 19 日 — 尊敬的委员会随后指示请愿人 NPC 提交一份新的请愿书,要求对 SPUG 地区适用的 SAGR 进行必要的调整。
摘要:在本研究中,我们提出了一种最佳微电网设计,该设计通过使用可靠的能源资源,确保以最便宜的价格向巴基斯坦阿扎德查谟和克什米尔 AJK 的米尔布尔工程技术大学 (MUST) 不间断供电。能源资源的可用性、环境可行性和经济可行性是设计的关键参数。MUST 站点的可用资源包括国家电网、太阳能光伏 (SPV)、电池组和柴油发电机。电力负荷、太阳照度、大学大气温度、柴油燃料成本、SPV 模块寿命、SPV 退化因子、SPV 效率、SPV 成本、电池成本、电池寿命、国家电网能源价格、负荷削减和有毒排放等数据在设计混合微电网时被视为有价值的数据。通过考虑上述参数,计算最佳设计和最差设计的净现值 (NPC) 差异。所提议的最佳微电网设计使用 SPV、柴油发电机和电池组为负载供电,NPC 为 250,546 美元,可再生能源比例为 99%。而最差的设计包括柴油发电机和电池组作为能源供应源,NPC 为 214 万美元,可再生能源比例为 0%。使用 HOMER Pro 软件(HOMER Energy、HOMER Pro-3.11、美国科罗拉多州博尔德)进行的模拟证明,在考虑了上述所有数据和要求后,在 979 种可行设计中,所提议的混合微电网设计最适合 MUST。