摘要我们提出了一个新型系统,该系统可以在具有上下文意识的游戏中使用大型语言模型(LLM)来增强非播放字符(NPC),从而提供动态,环境敏感的交互。传统上,NPC依靠预先列出的对话和对环境的认识,从而限制了他们对玩家行动的反应。我们的系统通过捕获NPC周围环境的全景图像并应用语义分割来识别对象及其空间位置来解决此问题。我们通过将对象位置与分割信息相结合,从而生成NPC环境的结构化JSON表示。此数据作为LLM提供了上下文,使NPC能够将空间知识纳入与玩家的对话中。结果是更身临其境的游戏玩法,NPC可以在互动过程中参考附近的对象,地标和环境特征,从而增强可信度和参与度。本文讨论了我们系统的技术实施,展示了将视觉感知整合到NPC中如何转换游戏内对话和交互。
识别导致神经遗传疾病的 DNA 变异的主要瓶颈是 VUS 的功能分析。本研究的目的是通过在 NPC 和斑马鱼中使用 CRISPR/Cas9 基因组编辑来开发一种方法,以对在巨脑回患者中观察到的候选致病变异进行建模。通过 aCGH 和 WES 分析了 20 名巨脑回/无脑回患者的 DNA,并确定了变异的优先级。通过使用 CRISPR/Cas9 基因组编辑在 NPC 和斑马鱼中生成突变系,并与已知在巨脑回/无脑回中发挥作用的三个关键基因(TUBG1、LIS1、DAB1)之一的模型进行了比较。使用 3D 基质胶腔系统 (ICChip) 对 NPC 进行表征,并在 3 dpf 和 5 dpf 时观察到发育中的斑马鱼的表型变化。使用 qPCR 对目标突变系和选定的变体系进行了比较。与对照组相比,在 3 个选定基因的突变 NPC 系中观察到迁移延迟。WES 确定了两个候选变体,CGREF1 和 NOL9。观察到 CGREF1KO 斑马鱼和 CGREF1KONPC 中无脑畸形和小头畸形相关基因和神经元分化基因的表达变化。在 Tubg1 突变斑马鱼中观察到严重的表型,包括小头和小眼,以及肝脏/肠道发育异常。我们的研究结果证明,使用 NPC 和斑马鱼模型可以以省时省钱的方式测试导致与 NPC 迁移相关的缺陷的变异。多组学分析可以进一步将这种方法的使用范围扩展到其他神经遗传缺陷组。该项目由 TUBITAKCOST Action 资助,代码号为 217S944。
摘要:细胞分裂调节剂在神经祖细胞(NPC)增殖和分化中起着至关重要的作用。细胞分裂周期25C(CDC25C)是Cdc25磷酸酶家族的成员,通过激活细胞周期蛋白依赖性蛋白激酶(CDKS),可以正向调节细胞分裂。ever,被敲除cdc25c基因的小鼠被证明是可行的,由于cdc25a和/或cdc25b的遗传补偿而缺乏明显的表型。在这里,我们通过使用子宫电穿孔中的NPC中击倒CDC25C来研究CDC25C在发育大鼠大脑中的功能。我们的结果表明,CDC25C在维持皮质发育过程中NPC的增殖状态中起着至关重要的作用。CDC25C的敲低导致早期细胞周期出口和NPC的过早分化。我们的研究发现了CDC25C在NPC分裂和细胞命运确定中的新作用。此外,我们的研究还提出了一种研究基因作用的功能方法,该方法通过在体内敲除皮质神经发生中引起遗传补偿。
摘要 - 不可播放的字符(NPC)是虚拟代理的子类型,可以通过认可叙事中的社交角色来填充视频游戏。为了推断NPC的角色,玩家通常通过将人类特征归因于NPC,例如智力,可爱和道德,评估NPC的外观和行为。特别是,视频游戏中的敌对NPC对于建立游戏的固有挑战至关重要。这里报道的三个实验研究了军事射击游戏中对敌对情绪的看法(包括外观威胁和行为中的攻击性)受到NPC的外观和行为的影响,这要归功于感知到的智力,可爱性和与道德相关的问卷。我们的结果首先表明,通过NPC的行为有效地传达了敌意,但并非通过其外观显着传达。第二,我们的研究允许确定敌对感知的主要预测指标,即不友善,知识和有害性。
核孔复合物(NPC)介导细胞核和细胞质之间的所有流量,是细胞中最稳定的蛋白质组件之一。有趣的是,发芽的酵母菌细胞具有两个NPC的两个变种,它们在存在或不存在核篮蛋白MLP1,MLP2和12 PML39的情况下有所不同。这些篮子蛋白的结合发生在NPC组装中很晚,而MLP阳性NPCS 13被排除在与核仁接壤的核包膜区域中。14在这里,我们使用重组诱导的TAG交换(RITE)来研究单个NPC中所有NPC 15子复合物的稳定性。我们表明,核篮蛋白MLP1,MLP2和16 PML39通过多个细胞分割循环与NPC保持稳定,并且MLP1/2是17负责将NPC从核方区域排除。此外,我们证明了NUP2的18结合还通过独立途径从该区域耗尽了MLP阴性NPC。我们19开发了一种在萌芽酵母中进行单个NPC跟踪的方法,并观察到在没有核篮成分的情况下,NPC在没有核篮成分的情况下表现出20个迁移率。我们的数据表明,NPCS 21在核上的分布受核篮蛋白与核内部的相互作用的控制。22
核孢子膜复合体(NPC)是ProteinAssembliestHatformChannelsCractrossthenaclear核包膜,以介导细胞核与细胞质之间的通信。另外,NPC与染色质相互作用,并影响多个基因的位置和表达。有趣的是,NPC的组成在不同的细胞类型,组织和发育状态下可能会有所不同。在这里,我们回顾了最新发现,这表明NPCCOMPOSITION的修改,包括post-translationalmodifations,PlayAninstructiveriverLolectiverIncellincellfate机构。,我们专注于细胞特异性NPC脱乙酰化在不对称分裂的发芽酵母中的作用,该酵母调节了传输依赖性和与运输无关的NPC函数,以确定对子细胞中新的分裂周期的承诺时间。通过调节蛋白质定位和基因表达,NPC被作为细胞同一性的中心调节剂而出现。
第一个重点领域是使用 AI 增强游戏中 NPC 的行为。NPC 在游戏体验中扮演着至关重要的角色,为玩家的行为提供互动和挑战。传统的 NPC 行为方法严重依赖预先编写的场景,限制了互动的深度和真实感。借助先进的 AI 技术,人们开始转向创建能够表现出更复杂、适应性更强和更逼真的行为的 NPC。这种转变不仅增强了玩家的沉浸感,还显著扩展了游戏的功能。本文回顾了 AI 驱动的 NPC 行为的最新研究和发展,探讨了如何利用 AI 算法和模型来创建能够以越来越像人类的方式学习、适应和响应的 NPC。
简单的“基于网格的寻路”,其中地形被映射到均匀正方形的刚性网格上,并将寻路算法(例如 A* 或 IDA*(图形遍历))应用于网格。[8][9][10] 有些游戏不只是使用刚性网格,而是使用不规则多边形,并从 NPC 可以步行到的地图区域组装导航网格。[8][11] 作为第三种方法,开发人员有时可以方便地手动选择 NPC 应该用来导航的“路径点”;但代价是,这样的路径点可能会产生不自然的运动。此外,在复杂环境中,路径点的表现往往比导航网格差。[12][13] 除了静态寻路之外,导航是游戏 AI 的一个子领域,专注于让 NPC 能够在动态环境中导航,找到通往目标的路径,同时避免与其他实体发生碰撞。相比改进游戏 AI 以妥善解决虚拟环境中的难题,修改场景使其更易于处理往往更具成本效益。如果寻路因特定障碍物而陷入困境,开发人员可能最终会移动或删除该障碍物。[14] 2. 文献综述
图1。NPC的延迟移植可改善势后的长期移植物存活。(a)示意图显示了实验设计。免疫缺陷rag2 - / - 小鼠在1 dpi(急性)或7 dpi(延迟)处局部移植Rfluc表达NPC的局部移植。(b)激光多普勒成像证实中风后脑血流(CBF)减少。(c)中风诱导后2小时对CBF进行定量。(d)代表性的生物发光成像(BLI)说明了两组选定时间点的6周内NPC存活。(e)两组移植后的前3天内对BLI信号的定量。(g)在移植后7天使用EDU掺入的增生评估的示意性时间表,在42天(急性)和35天(延迟)移植后移植时进行染色,以跟踪移植物增殖。(h)在移植后7天,在35 dpi(延迟)和42 dpi(急性)天以35 dpi(延迟)和42 dpi(急性)天的7天和KI67 + NPC对EDU + NPC进行定量的代表性免疫荧光图像。(j)显示具有多能标记Nanog,NPC标记PAX6,Neuronal标记NEUN和星形胶质细胞标记GFAP的表型面板。(k)移植后六周移植的NPC(HUNU+)的代表性免疫荧光图像。比例尺:50µm。(l)急性移植组中移植物组成的定量。数据显示为平均分布,其中红点表示平均值。框图表示数据的25%至75%四分位数。总共使用了8只动物,每组4只动物。箱形图:图中的每个点代表一种动物。线图被绘制为平均值±SEM。使用未配对的Mann-Whitney U检验(C和E)或未配对的t检验(I)评估平均差异的显着性。统计显着性设置为 *,p <0.05; **,p <0.01; ***,p <0.001。
Acronym Description ICE Vehicle Internal Combustion Engine Vehicle LEW Licensed Electrical Worker LNO Letter of No Objection LTA Land Transport Authority MCST Management Corporation Strata Title NLPR Non-landed Private Residence NPCS National Public Charging Standards OCPS Optional Public Charging Standards RPPS Range-based Parking Provision Standards RRP Registered Responsible Person TR25 Technical Reference 25 UTC Unable to Charge