e很高兴宣布NPJ Clean Air推出,这是一本开放式,经过同行评审的日记,致力于在空气污染,公共卫生和气候变化的中心进行纪律间研究。我们介绍了这个平台,这是巨大的特权,为科学家提供了一个阶段,以传播尖端研究,科学见解和观点。npj清洁空气进行了研究,该研究促进了我们对环境,公共卫生和空气污染的气候影响的影响,并探讨了缓解方法的方法。今天,全球气候变化,空气污染和环境健康 - 在其协同作用中相互关联但复杂 - 构成了挑战性的公共知识。因此,迫切需要一份期刊,该期刊整合了关于空气污染,气候变化和人类健康的研究,以展示最新的科学进步,并加深我们对环境风险和人类健康对气候变化的影响的理解。在这种情况下,NPJ清洁空气诞生了。
肿瘤内异质性对复发性胶质母细胞瘤的诊断和治疗构成了重大挑战。本研究涉及对每个患者整个病变中组织病理学改变的异质景观的非侵入性方法的需求。我们开发了一种生物知识的神经网络Bionet,以预测两个主要组织基因模块的区域分布:增殖肿瘤(Pro)和反应性/炎症细胞(INF)。Bionet显着胜过现有方法(P <2E-26)。在交叉验证中,Bionet的AUC为0.80(Pro)和0.81(INF),精度分别为80%和75%。在盲试验中,Bionet的AUC为0.80(Pro)和0.76(INF),精度为81%和74%。竞争方法的AUC较低或0.6左右,精度较低或约70%。Bionet的体素级预测图显示了肿瘤内异质性,有可能改善靶向活检和治疗评估。这种非侵入性方法促进了定期监测和及时的治疗调整,突出了ML在精确医学中的作用。
7作者校正:BCG和BCG BCG1419C通过T和B淋巴细胞,树突细胞和促炎细胞因子(NPJ疫苗(NPJ疫苗,(NPJ),(2020),5,1,1,1,11038/s411541 <1038/s411541,
自 20 世纪 80 年代初推出活性污泥模型 1 号 (ASM1) 以来,人们在应用这些模型方面已有十年的经验,并证明了它们在污水处理厂的设计和运行方面的成熟度。然而,这些模型在复杂性和应用准确性方面已经达到了极限。一个例子是,尽管提出了许多扩展 ASM 来描述活性污泥厂中的 N2O 生成动态,但这些模型仍然过于复杂,尚未得到验证。这篇前瞻性论文提出了一种新的愿景,即通过明确整合活性污泥模型中分子数据测量的微生物群落信息来推进过程建模。在这个新的研究领域,我们建议利用先进基因测序技术丰富的分子数据与人工智能与过程工程模型的集成之间的协同作用。这是一个跨学科的研究领域,使两个独立的学科,即环境生物技术,能够联合起来,与建模和工程界合作,为未来可持续的污水处理厂进行新的理解和基于模型的工程。
参考文献1 Sung H等。ca Cancer J Clin。2021; 10.3322/caac.21660 2 O'Reilly D等。世界J Clin Oncol。2021; 12(3):164-182。3 Bergin A等。f1000res。2019; doi:10.12688/f1000research.18888。4 Zhang Y等。 BMC癌。 2021; 21(568)。 5 Yoder R等。 NPJ乳腺癌。 2022; 8(1):80。 6美国癌症学会。 三阴性乳腺癌的治疗。 2023年11月访问7国家癌症研究所。 seer癌统计事实:女性乳腺癌亚型。 2023年11月访问。 8 Sharma P.等。 肿瘤学家。 2016; 21(9):1050–1062。 9 Lin H等。 exp mol Pathol。 2013; 94(1):73-8。 10 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 11 Dieci MV等。 NPJ乳腺癌。 2021; 7(1):101。 12 Schrodi S等。 Ann Oncol。 2021; 32(11):1410-24。4 Zhang Y等。BMC癌。 2021; 21(568)。 5 Yoder R等。 NPJ乳腺癌。 2022; 8(1):80。 6美国癌症学会。 三阴性乳腺癌的治疗。 2023年11月访问7国家癌症研究所。 seer癌统计事实:女性乳腺癌亚型。 2023年11月访问。 8 Sharma P.等。 肿瘤学家。 2016; 21(9):1050–1062。 9 Lin H等。 exp mol Pathol。 2013; 94(1):73-8。 10 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 11 Dieci MV等。 NPJ乳腺癌。 2021; 7(1):101。 12 Schrodi S等。 Ann Oncol。 2021; 32(11):1410-24。BMC癌。2021; 21(568)。5 Yoder R等。 NPJ乳腺癌。 2022; 8(1):80。 6美国癌症学会。 三阴性乳腺癌的治疗。 2023年11月访问7国家癌症研究所。 seer癌统计事实:女性乳腺癌亚型。 2023年11月访问。 8 Sharma P.等。 肿瘤学家。 2016; 21(9):1050–1062。 9 Lin H等。 exp mol Pathol。 2013; 94(1):73-8。 10 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 11 Dieci MV等。 NPJ乳腺癌。 2021; 7(1):101。 12 Schrodi S等。 Ann Oncol。 2021; 32(11):1410-24。5 Yoder R等。NPJ乳腺癌。 2022; 8(1):80。 6美国癌症学会。 三阴性乳腺癌的治疗。 2023年11月访问7国家癌症研究所。 seer癌统计事实:女性乳腺癌亚型。 2023年11月访问。 8 Sharma P.等。 肿瘤学家。 2016; 21(9):1050–1062。 9 Lin H等。 exp mol Pathol。 2013; 94(1):73-8。 10 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 11 Dieci MV等。 NPJ乳腺癌。 2021; 7(1):101。 12 Schrodi S等。 Ann Oncol。 2021; 32(11):1410-24。NPJ乳腺癌。2022; 8(1):80。6美国癌症学会。 三阴性乳腺癌的治疗。 2023年11月访问7国家癌症研究所。 seer癌统计事实:女性乳腺癌亚型。 2023年11月访问。 8 Sharma P.等。 肿瘤学家。 2016; 21(9):1050–1062。 9 Lin H等。 exp mol Pathol。 2013; 94(1):73-8。 10 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 11 Dieci MV等。 NPJ乳腺癌。 2021; 7(1):101。 12 Schrodi S等。 Ann Oncol。 2021; 32(11):1410-24。6美国癌症学会。三阴性乳腺癌的治疗。2023年11月访问7国家癌症研究所。seer癌统计事实:女性乳腺癌亚型。2023年11月访问。8 Sharma P.等。肿瘤学家。2016; 21(9):1050–1062。9 Lin H等。 exp mol Pathol。 2013; 94(1):73-8。 10 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 11 Dieci MV等。 NPJ乳腺癌。 2021; 7(1):101。 12 Schrodi S等。 Ann Oncol。 2021; 32(11):1410-24。9 Lin H等。exp mol Pathol。2013; 94(1):73-8。10 Goldenberg D等。oncotarget。2018; 9(48):28989-29006。 11 Dieci MV等。 NPJ乳腺癌。 2021; 7(1):101。 12 Schrodi S等。 Ann Oncol。 2021; 32(11):1410-24。2018; 9(48):28989-29006。11 Dieci MV等。 NPJ乳腺癌。 2021; 7(1):101。 12 Schrodi S等。 Ann Oncol。 2021; 32(11):1410-24。11 Dieci MV等。NPJ乳腺癌。 2021; 7(1):101。 12 Schrodi S等。 Ann Oncol。 2021; 32(11):1410-24。NPJ乳腺癌。2021; 7(1):101。12 Schrodi S等。Ann Oncol。 2021; 32(11):1410-24。Ann Oncol。2021; 32(11):1410-24。
•ATP7B变体P.MET645ARG通过促进外显子6跳动而引起威尔逊病:NPJ基因组医学中的出版物; Daniele Merico, Carl Spickett, Matthew OHara, Boyko Kakaradov, Amit G. Deshwar, Philip Fradkin , Shreshth Gandhi, Jiexin Gao, Solomon Grant, Ken Kron, Frank W. Schmitges, Zvi Shalev, Mark Sun, Marta Verby, Matthew Cahill, James J. Dowling, Johan Fransson, Erno Wienholds, Brendan J. Frey NPJ Genom。Med。5,16。
Bennett,C。H.&Brassard,G。量子密码学:公共密钥分布和硬币折腾。理论。计算。SCI。 560,7-11(2014)。 Dynes,J。F.等。 剑桥量子网络。 NPJ量子。 inf。 5,101(2019)。 Pirandola,S.,Laurenza,R.,Ottaviani,C。&Banchi,L。无用量子通信的基本限制。 nat。 社区。 8,15043(2017)。 Duan,L.-M。,Lukin,M。D.,Cirac,J.I。 &Zoller,P。与原子集合和线性光学元件的长距离量子通信。 自然414,413–418(2001)。 lo,H.-K。,Curty,M。&Qi,B。测量 - 独立于量子键分布。 物理。 修订版 Lett。 108,130503(2012)。 Rao,Vinod N,Banerjee,A。和Srikanth R.等,Commun。 理论。 物理。 75 065102(2023)Wang,X.-B.,Yu,Z.-W。 &Hu,X.-L。双场量子键分布,误差较大。 物理。 修订版 A 98,062323(2018)Curty,M.,Azuma,K。&Lo,H.-K。 双场类型量子密钥分布协议的简单安全证明。 NPJ量子。 inf。 5,64(2019)。 Currás-Lorenzo,G。等。 双场量子密钥分布的紧密有限键安全性。 NPJ量子。 inf。 7,22(2021)。 Wang,S。等。 双场量子键分布超过830 km纤维。 nat。 光子学16,154 - 161(2022)。SCI。560,7-11(2014)。 Dynes,J。F.等。 剑桥量子网络。 NPJ量子。 inf。 5,101(2019)。 Pirandola,S.,Laurenza,R.,Ottaviani,C。&Banchi,L。无用量子通信的基本限制。 nat。 社区。 8,15043(2017)。 Duan,L.-M。,Lukin,M。D.,Cirac,J.I。 &Zoller,P。与原子集合和线性光学元件的长距离量子通信。 自然414,413–418(2001)。 lo,H.-K。,Curty,M。&Qi,B。测量 - 独立于量子键分布。 物理。 修订版 Lett。 108,130503(2012)。 Rao,Vinod N,Banerjee,A。和Srikanth R.等,Commun。 理论。 物理。 75 065102(2023)Wang,X.-B.,Yu,Z.-W。 &Hu,X.-L。双场量子键分布,误差较大。 物理。 修订版 A 98,062323(2018)Curty,M.,Azuma,K。&Lo,H.-K。 双场类型量子密钥分布协议的简单安全证明。 NPJ量子。 inf。 5,64(2019)。 Currás-Lorenzo,G。等。 双场量子密钥分布的紧密有限键安全性。 NPJ量子。 inf。 7,22(2021)。 Wang,S。等。 双场量子键分布超过830 km纤维。 nat。 光子学16,154 - 161(2022)。560,7-11(2014)。Dynes,J。F.等。 剑桥量子网络。 NPJ量子。 inf。 5,101(2019)。 Pirandola,S.,Laurenza,R.,Ottaviani,C。&Banchi,L。无用量子通信的基本限制。 nat。 社区。 8,15043(2017)。 Duan,L.-M。,Lukin,M。D.,Cirac,J.I。 &Zoller,P。与原子集合和线性光学元件的长距离量子通信。 自然414,413–418(2001)。 lo,H.-K。,Curty,M。&Qi,B。测量 - 独立于量子键分布。 物理。 修订版 Lett。 108,130503(2012)。 Rao,Vinod N,Banerjee,A。和Srikanth R.等,Commun。 理论。 物理。 75 065102(2023)Wang,X.-B.,Yu,Z.-W。 &Hu,X.-L。双场量子键分布,误差较大。 物理。 修订版 A 98,062323(2018)Curty,M.,Azuma,K。&Lo,H.-K。 双场类型量子密钥分布协议的简单安全证明。 NPJ量子。 inf。 5,64(2019)。 Currás-Lorenzo,G。等。 双场量子密钥分布的紧密有限键安全性。 NPJ量子。 inf。 7,22(2021)。 Wang,S。等。 双场量子键分布超过830 km纤维。 nat。 光子学16,154 - 161(2022)。Dynes,J。F.等。剑桥量子网络。NPJ量子。inf。5,101(2019)。 Pirandola,S.,Laurenza,R.,Ottaviani,C。&Banchi,L。无用量子通信的基本限制。 nat。 社区。 8,15043(2017)。 Duan,L.-M。,Lukin,M。D.,Cirac,J.I。 &Zoller,P。与原子集合和线性光学元件的长距离量子通信。 自然414,413–418(2001)。 lo,H.-K。,Curty,M。&Qi,B。测量 - 独立于量子键分布。 物理。 修订版 Lett。 108,130503(2012)。 Rao,Vinod N,Banerjee,A。和Srikanth R.等,Commun。 理论。 物理。 75 065102(2023)Wang,X.-B.,Yu,Z.-W。 &Hu,X.-L。双场量子键分布,误差较大。 物理。 修订版 A 98,062323(2018)Curty,M.,Azuma,K。&Lo,H.-K。 双场类型量子密钥分布协议的简单安全证明。 NPJ量子。 inf。 5,64(2019)。 Currás-Lorenzo,G。等。 双场量子密钥分布的紧密有限键安全性。 NPJ量子。 inf。 7,22(2021)。 Wang,S。等。 双场量子键分布超过830 km纤维。 nat。 光子学16,154 - 161(2022)。5,101(2019)。Pirandola,S.,Laurenza,R.,Ottaviani,C。&Banchi,L。无用量子通信的基本限制。nat。社区。8,15043(2017)。Duan,L.-M。,Lukin,M。D.,Cirac,J.I。 &Zoller,P。与原子集合和线性光学元件的长距离量子通信。 自然414,413–418(2001)。 lo,H.-K。,Curty,M。&Qi,B。测量 - 独立于量子键分布。 物理。 修订版 Lett。 108,130503(2012)。 Rao,Vinod N,Banerjee,A。和Srikanth R.等,Commun。 理论。 物理。 75 065102(2023)Wang,X.-B.,Yu,Z.-W。 &Hu,X.-L。双场量子键分布,误差较大。 物理。 修订版 A 98,062323(2018)Curty,M.,Azuma,K。&Lo,H.-K。 双场类型量子密钥分布协议的简单安全证明。 NPJ量子。 inf。 5,64(2019)。 Currás-Lorenzo,G。等。 双场量子密钥分布的紧密有限键安全性。 NPJ量子。 inf。 7,22(2021)。 Wang,S。等。 双场量子键分布超过830 km纤维。 nat。 光子学16,154 - 161(2022)。Duan,L.-M。,Lukin,M。D.,Cirac,J.I。&Zoller,P。与原子集合和线性光学元件的长距离量子通信。自然414,413–418(2001)。lo,H.-K。,Curty,M。&Qi,B。测量 - 独立于量子键分布。物理。修订版Lett。 108,130503(2012)。 Rao,Vinod N,Banerjee,A。和Srikanth R.等,Commun。 理论。 物理。 75 065102(2023)Wang,X.-B.,Yu,Z.-W。 &Hu,X.-L。双场量子键分布,误差较大。 物理。 修订版 A 98,062323(2018)Curty,M.,Azuma,K。&Lo,H.-K。 双场类型量子密钥分布协议的简单安全证明。 NPJ量子。 inf。 5,64(2019)。 Currás-Lorenzo,G。等。 双场量子密钥分布的紧密有限键安全性。 NPJ量子。 inf。 7,22(2021)。 Wang,S。等。 双场量子键分布超过830 km纤维。 nat。 光子学16,154 - 161(2022)。Lett。108,130503(2012)。Rao,Vinod N,Banerjee,A。和Srikanth R.等,Commun。 理论。 物理。 75 065102(2023)Wang,X.-B.,Yu,Z.-W。 &Hu,X.-L。双场量子键分布,误差较大。 物理。 修订版 A 98,062323(2018)Curty,M.,Azuma,K。&Lo,H.-K。 双场类型量子密钥分布协议的简单安全证明。 NPJ量子。 inf。 5,64(2019)。 Currás-Lorenzo,G。等。 双场量子密钥分布的紧密有限键安全性。 NPJ量子。 inf。 7,22(2021)。 Wang,S。等。 双场量子键分布超过830 km纤维。 nat。 光子学16,154 - 161(2022)。Rao,Vinod N,Banerjee,A。和Srikanth R.等,Commun。理论。物理。75 065102(2023)Wang,X.-B.,Yu,Z.-W。 &Hu,X.-L。双场量子键分布,误差较大。 物理。 修订版 A 98,062323(2018)Curty,M.,Azuma,K。&Lo,H.-K。 双场类型量子密钥分布协议的简单安全证明。 NPJ量子。 inf。 5,64(2019)。 Currás-Lorenzo,G。等。 双场量子密钥分布的紧密有限键安全性。 NPJ量子。 inf。 7,22(2021)。 Wang,S。等。 双场量子键分布超过830 km纤维。 nat。 光子学16,154 - 161(2022)。75 065102(2023)Wang,X.-B.,Yu,Z.-W。 &Hu,X.-L。双场量子键分布,误差较大。物理。修订版A 98,062323(2018)Curty,M.,Azuma,K。&Lo,H.-K。双场类型量子密钥分布协议的简单安全证明。NPJ量子。inf。5,64(2019)。 Currás-Lorenzo,G。等。 双场量子密钥分布的紧密有限键安全性。 NPJ量子。 inf。 7,22(2021)。 Wang,S。等。 双场量子键分布超过830 km纤维。 nat。 光子学16,154 - 161(2022)。5,64(2019)。Currás-Lorenzo,G。等。双场量子密钥分布的紧密有限键安全性。NPJ量子。inf。7,22(2021)。Wang,S。等。 双场量子键分布超过830 km纤维。 nat。 光子学16,154 - 161(2022)。Wang,S。等。双场量子键分布超过830 km纤维。nat。光子学16,154 - 161(2022)。Zhou,L.,Lin,J.,Jing,Y。和Yuan,Z。Twin-twin-field量子键分布,无光频率传播。自然通讯,14(1),p.928(2023)
•Wong JN,Walter JR,Conrad EC,Seshadri DR,Lee JY,Gonzalez H等。(2023)儿科的全面无线神经和心肺监测平台。PLOS Digit Health 2(7):E0000291•Seshadri DR等。(2020)Covid-19的可穿戴传感器:呼吁采取行动来利用我们的数字基础设施进行远程患者监控和虚拟评估。正面。数字。健康2:8。 •Seshadri,D.R.,Li,R.T.,Voos,J.E。 等。 可穿戴的传感器,用于监测运动员的生理和生化特征。 NPJ数字。 Med。 2,72(2019)。健康2:8。•Seshadri,D.R.,Li,R.T.,Voos,J.E。等。可穿戴的传感器,用于监测运动员的生理和生化特征。NPJ数字。Med。2,72(2019)。
Yao, Y.、Chan, H.、Sankaranarayanan, S.、Balaprakash, P.、Harder, RJ 和 Cherukara, MJ (2022)。AutoPhaseNN:3D 纳米级布拉格相干衍射成像的无监督物理感知深度学习。npj 计算材料,8(1),1-8。