描述了一种用于分配不含 226Ra 的 222Rn 水溶液的装置的设计和特性,其活性浓度可追溯到英国国家放射性标准。该装置由聚乙烯封装的 226Ra 溶液组成,该溶液浸入蒸馏水中,封闭在装有中央波纹管的金属累积室内。累积室两端都有计量阀,并连接到用于收缩和扩张波纹管的电机驱动机构。溶液通过位于下阀下方的针头分配。该装置由微处理器控制单元 (MCU) 操作,其特征是按照指定的操作程序分配的 222Rn 的活性浓度。该单位已与美国盖瑟斯堡国家标准与技术研究所 (NIST) 的类似系统进行了比对。
npl.co.uk › ... PDF 作者:JF Verrill · 1997 — 作者:JF Verrill · 1997 量子计量中心。国家物理实验室。泰丁顿,米德尔塞克斯,TW11 0LW。NPL 报告 QM 130。简介。
VIM [ 6 ,第 2.1 条] 将测量定义为“通过实验获得一个或多个可合理归因于某个量的量值的过程”,但这是一个模糊且含糊的定义。“实验”一词似乎将测量限制为以实验形式进行的过程。因此,如果用于评估的数据是“通过实验”获得的,它似乎涵盖了对某个量的 A 类评估,但排除了 B 类评估。而且,由于测量模型通常结合了两种评估的输入,因此根据此定义,使用这种模型也不是测量。毋庸置疑,计量学家始终将使用测量模型视为测量,因此此定义不符合计量实践。
研究了一种新方法,用于选择使用激光吹粉 - 直接能量沉积 (LBP-DED) 生产并在涡轮段中填充间隙 Ni-Al 粉末(~0.75 面积分数)的修复支撑结构设计。使用四点弯曲试验量化了段的压扁和不压扁模拟及其对支撑结构退化的影响,以确定轴向杨氏模量在平面外弯曲中的作用。生产了两种截然不同的 LBP 添加结构;金刚石晶格 (DL) - 节点和连续路径 (CP) - 非节点,并将其与未修复状态进行比较。在室温下,发现原始设备 (OE) 和 DL 支撑结构的前壁和后壁以及内部节点对杨氏模量的贡献很大,而 CP 结构的刚度明显降低。氧化在耐磨材料内部压缩应力的形成过程中起着关键作用,CP 结构的弹性模量增加了两倍,但 OE 和 DL 支撑结构的弹性模量增加较少。随着弯曲循环次数的增加,弹性模量降低,曲率半径(扁平化)随之增加。开裂在前后壁内的节点设计中最为突出,裂纹会传播到表面或耐磨晶格的底部。在原始和 CP 支撑结构中,即使循环次数达到相当高,在等效弯曲循环中也没有观察到这种退化。从弯曲弹性模量的急剧下降伴随着曲率的明显变化,可以推导出耐磨材料灾难性失效的标准。非节点设计支撑结构最适合应对使用中的扁平化/不扁平化。
玻璃的热导率测量结果取决于所用样品的厚度(图 1)。这种行为归因于辐射传导率 kR' 的贡献,这种现象可能发生在半透明介质(如炉渣)中。辐射传导率通过介质中各个部分对辐射能的吸收和发射机制发生(1,2)。考虑炉渣中的薄部分,该部分吸收的辐射能将导致其温度升高,从而将辐射热发射到较冷的部分。该过程可以通过介质连续发生,很明显,以这种方式传输的能量将随着部分数量的增加(即厚度增加)而增加,直到达到 kR 达到恒定值的点。此时炉渣被称为“oEticall~
玻璃的热导率测量结果取决于所用样品的厚度(图 1)。这种行为归因于辐射传导率 kR' 的贡献,这种现象可能发生在半透明介质(如炉渣)中。辐射传导率通过介质中各个部分对辐射能的吸收和发射机制发生(1,2)。考虑炉渣中的薄部分,该部分吸收的辐射能将导致其温度升高,从而将辐射热发射到较冷的部分。该过程可以通过介质连续发生,很明显,以这种方式传输的能量将随着部分数量的增加(即厚度增加)而增加,直到达到 kR 达到恒定值的点。此时炉渣被称为“oEticall~
本指南提供了评估计量学中不确定度的最佳实践,以及通过统计建模对此主题的支持。其编写主要基于两点考虑。首先,尽管不确定度评估的主要指南,即 ISO 发布的《测量不确定度表示指南》(GUM),有望得到非常广泛的应用,但它主要认可的方法存在一些局限性。另一个原因是,根据作者与计量学界从业人员的大量接触,显然我们所遇到的重要问题都受到这些限制。进一步的考虑是,实践中遇到的测量模型超出了 GUM 中介绍的模型类型(即单变量、显式和实数)的范围。
玻璃的热导率测量结果取决于所用样品的厚度(图 1)。这种行为归因于辐射传导率 kR' 的贡献,这种现象可能发生在半透明介质(如炉渣)中。辐射传导率通过介质中各个部分对辐射能的吸收和发射机制发生(1,2)。考虑炉渣中的薄部分,该部分吸收的辐射能将导致其温度升高,从而将辐射热发射到较冷的部分。该过程可以通过介质连续发生,很明显,以这种方式传输的能量将随着部分数量的增加(即厚度增加)而增加,直到达到 kR 达到恒定值的点。此时炉渣被称为“oEticall~
在包含镜面的几何结构中,由于积分球的不均匀性,反射的镜面分量可能无法以与漫反射分量相同的效率收集。可以使用校准镜和哑光白色反射标准再次确定与镜面光束相关的误差。确定此错误的方法在附录中给出。镜面光束反射误差系数表示为 K:;。表 3 列出了所有参与者的 K:; 值。这些值介于约 0.4% 和 0.04% 之间。对于光泽样品,镜面反射率通常在 4% 左右。因此,对于光泽样品,总反射率永远不会低于 4%,即使是黑色光泽样品也是如此。因此,对于参与者的结果,反射率始终至少是镜面光束误差的 10 倍。
本指南提供了计量学中不确定度评估的最佳实践,以及统计建模对此主题的支持。它基于两个主要考虑。首先,尽管不确定度评估的主要指南,即 ISO 发布的“测量不确定度表达指南”(GUM),可以预期具有非常广泛的适用性,但它主要认可的方法存在一些局限性。另一个原因是,根据作者与计量学界从业人员的大量接触,显然会遇到受这些限制影响的重要问题。进一步的考虑是,在实践中遇到的测量模型超出了 GUM 中介绍的模型类型(即单变量、显式和实数)的范围。