由生物膜引起的持续感染是一种紧急医学,应通过新的替代策略来解决。经典治疗和抗生素耐药性的低效率是由于生物膜形成而引起的持续感染的主要问题,这增加了发病率和死亡率的风险。生物膜细胞中的基因表达模式与浮游细胞中的基因表达模式不同。针对生物膜的有前途的方法之一是基于纳米颗粒(NP)的治疗,其中具有多种机制的NP阻碍了细菌细胞在浮游物或生物膜形式中的抗性。例如,通过不同的策略干扰与生物膜相关的细菌的基因表达,诸如银(Ag),氧化锌(Ag),氧化锌(ZnO),二氧化钛(TIO 2),氧化铜(CU)和氧化铁(Fe 3 O 4)。NP可以渗透到生物膜结构中,并影响外排泵的表达,法定感应和与粘附相关的基因,从而抑制生物膜的形成或发育。因此,通过NPS来理解和靶向细菌生物膜的基因和分子基础,指向可以控制生物膜感染的治疗靶标。同时,应通过受控的暴露和安全评估来避免NP对环境及其细胞毒性的可能影响。本研究的重点是生物膜相关的基因,这些基因是抑制具有高效NP的细菌生物膜的潜在靶标,尤其是金属或金属氧化物NP。
摘要 随着纳米粒子在研究领域的应用越来越受到关注,本研究旨在评估两种植物来源凤凰木和白菜的化学和绿色合成氧化锌纳米粒子 (ZnO NPs) 的体外抗菌特性。叶提取物中的生物活性化合物可用于稳定纳米粒子。使用紫外-可见分光光度法 (UV-vis)、X 射线衍射 (XRD) 和扫描电子显微镜 (SEM) 来阐明合成的 ZnO NPs 的光学和结构特性。通过琼脂盘扩散试验评估了 ZnO NPs 对两种致病菌株的体外抗菌潜力:蜡状芽孢杆菌(一种革兰氏阳性动物病原体)和丁香假单胞菌(一种革兰氏阴性植物病原体),这是一种全面的方法。在 250 至 400 nm 范围内测量紫外-可见光谱,并通过 XRD 分析晶体结构。能量色散 X 射线光谱 (SEM-EDS) 分析证实了合成的 ZnO NPs 的所有三个样品的纳米结构具有部分纳米薄片和聚集体。D. elata ZnO NPs 对两种细菌菌株的抗菌活性相对高于 G. cusimbua ZnO NPs。因此,植物基纳米粒子可能是开发多功能且环保的生物医学产品的绝佳策略。由于它们具有预先存在的药用特性,它们具有额外的优势,这使得它们成为广泛使用的化学合成纳米粒子的更合适的替代品。关键词:凤凰木、白菜、氧化锌纳米粒子、抗菌活性、蜡状芽孢杆菌、丁香假单胞菌。
目的:目前肿瘤诱导的哨兵淋巴结检测和转移治疗策略存在局限性。必须尽早识别并警告肿瘤转移,以开展有效的临床干预。此外,由于抗肿瘤药物的非特异性递送和严重的副作用,传统的癌症化疗受到极大的限制。我们旨在利用凝溶胶蛋白 (GSN) 单克隆抗体作为靶向剂和全氟己烷 (PFH) 作为相变剂的潜力,以最大限度地发挥聚乳酸-乙醇酸共聚物 (PLGA) 纳米颗粒药物可控释放系统对 Hca-F 细胞的细胞毒性作用。方法:我们将 PFH 和阿霉素 (DOX) 共封装到 PLGA 纳米颗粒 (NPs) 中,并进一步将 GSN 单克隆抗体结合到 NPs 表面,形成 GSN 靶向相变聚合物 NPs (GSN-PLGA-PFH-DOX),用于肿瘤和转移性淋巴结的成像和治疗。为了促进和触发药物按需释放,应用低强度聚焦超声 (LIFU) 来实现封装药物的可控释放。结果:GSN-PLGA-PFH-DOX NPs 表现出尺寸分布窄、表面光滑等特点。GSN-PLGA-PFH-DOX NPs 还可以特异性结合 Hca-F 细胞并增加超声造影剂 (UCA) 图像对比强度。 GSN-PLGA-PFH-DOX NPs 可实现 GSN 介导的靶向和生物治疗作用以及 LIFU 响应性药物释放,从而在体外对 GSN 过表达细胞产生协同细胞毒性作用。结论:我们的工作可能为原发性肿瘤及其转移瘤的成像和化疗提供一种策略。关键词:聚乳酸-乙醇酸共聚物、凝溶胶蛋白、相变、可控药物释放
国家公园管理局 (NPS) 应急计划是根据管理和预算办公室 A-11 号通告第 124 节的要求制定的。NPS 组织法 (54 USC 100101) 规定,NPS 的目的是保护风景、自然和历史遗迹以及野生动物,并以不损害其价值的方式和手段供子孙后代欣赏。主管负责执行该计划,包括根据拨款中断的时间长短和外部环境的变化对计划进行调整。一般而言,国家公园管理局将在拨款中断期间关闭。这意味着大多数国家公园将完全不对公众开放。本质上对公众开放的区域将面临游客服务大幅减少的问题。因此,将鼓励公众在拨款中断期间不要参观国家公园。游客可以使用 Recreation.gov 了解有关预订政策的更多信息,包括取消程序。如果无法通过提供如下所述的基本游客服务来保护可进入区域,NPS 可能会限制进入这些区域。下文详细介绍了有序关闭的程序和遵守 NPS 组织法以及公共安全所需的例外情况,以及其他运营指导。如果任何失误持续较长时间,主任可能会对本计划进行调整。
环境中纳米塑料(NP)和微塑料(MP)的存在被认为是全球规模的问题。由于其疏水性和较大的特异性表面,NP和MP可以吸附其他污染物,作为多环芳烃(PAHS),并调节其生物利用度和危害。成年斑马鱼暴露3和21天,至:(1)0.07 mg/l NP(50 nm),(2)0.05 mg/l MPS(4.5μm),(3)MPS,带有水的油的吸附油化合物(WAF)的浓度(WAF)的浓度(WAF),均与含有戒指的香油(MPS-WAF),(MPS-WAF),(MPS-WAF),(4)MPS(4)MPS(4) (MPS-B(A)P),(5)5%WAF和(6)21μg/L B(a)p。在接近微绒毛的肠腔中可以看到类似NP的电义颗粒。MP在肠腔中大量发现,但未内化到组织中。21天后,NPS引起CAT的显着下调,GPX1A和SOD1的上调,而MPS上调CYP1A并增加了肝脏真空的患病率。在ill中未观察到组织病理学改变。在这项研究中,受污染的MPS并未增加斑马鱼的PAH水平,但结果强调了塑料颗粒的潜在差异影响,这取决于其大小,因此必须紧急解决真实环境NP和MPS的生态毒理学影响。
摘要。近年来,已进行了大量研究,将氧化锡 (SnO 2 ) 与各种半导体材料相结合,以提高其用于废水处理的光催化效率,而对增强纯 SnO 2 的固有能力的关注甚少。本研究的主要目的是通过改变纯 SnO 2 纳米粒子 (NPs) 的形貌、结构和光学特性来提高其光催化效率。使用沉淀法合成 SnO 2 NPs,然后在不同温度下进行煅烧过程(未煅烧、300°C 和 500°C)。利用 X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、粒度分析 (PSA)、Brunauer-Emmett-Teller (BET) 和紫外-可见 (UV-Vis) 光谱研究了 SnO 2 NPs 性质的变化。结果表明,将煅烧温度提高到 500 °C 会导致平均晶粒尺寸(高达 10.50 nm)和结晶度(高达 85.28 %)均增加。然而,在 300 °C 下煅烧的 SnO 2 NPs 样品中获得了最高的亚甲蓝降解光催化效率 84.78 %,其最大表面积为 83.97 m 2 g -
金属氯化物配合物在温和条件下与Tris(三甲基甲硅烷基)磷酸反应,以产生金属磷化物(TMP)纳米颗粒(NPS),而氯甲基甲硅烷则作为副产物。与起始M-CL键更强的Si-Cl键的形成是反应的驱动力。通过使用[RUCL 2(Cymene)]和Tris(Trimet-hylsilyl)磷酸在35°C中制备该策略的潜力。将小(1.3 nm的直径为1.3 nm)和无定形NP形成,其整体RU 50 P 50组成。有趣的是,这些NP可以很容易地固定在功能支持材料上,这对于在催化和电催化中的潜在应用引起了极大的兴趣。mo 50 P 50和CO 50 P 50 NP也可以按照相同的策略合成。这种方法简单且通用,并为在轻度反应条件下制备广泛的过渡金属磷化物纳米颗粒的方式铺平了道路。
纳米技术在各个科学领域都提供了许多优势。纳米技术的最新进展已证明,纳米颗粒在医疗应用中具有巨大的潜力。纳米科学和纳米技术的最新进展从根本上改变了我们诊断,治疗和预防人类生活各个方面的各种疾病的方式。本综述提供了纳米颗粒(NP)的合成,属性和应用的详细概述,以不同的形式存在。nps很小且小,范围为1至100 nm。他们根据其属性,形状或大小将其分类为不同的类。不同的组包括富勒烯,金属NP,陶瓷NP和聚合物NP。NP由于其高表面积和纳米级尺寸而具有独特的物理和化学特性。银纳米颗粒(AGNP)是与生物医学应用有关的几种金属纳米颗粒中最重要,最迷人的纳米材料之一。AGNP在纳米科学和纳米技术中起着重要作用,尤其是在纳米医学中。银纳米颗粒在医疗领域的主要应用包括诊断应用和治疗应用,除了其抗菌活性。
•纳米医学的药代动力学与传统药物有很大不同。•影响NPS生物分布的重要机制之一是吞噬作用。•NP的不同物理化学特性,例如大小,材料,生物化学和形状,
塑料,持续有机污染物(POP)和重金属的人为释放可能会影响包括水生生态系统在内的环境。纳米塑料(NP)最近出现为普遍的环境污染物,具有吸附流行的能力并可能引起生物体的压力。在流行音乐中,DDT及其代谢产物是由于持久性的持续性而是ubiq是ubiq的环境污染物。尽管在欧洲停产的DDT使用,但DDT及其代谢产物(主要是P,P'-DDE)仍在鲑鱼水产养殖中使用的饲料中可检测到的水平上发现。我们的研究旨在将NP(50 mg/L聚苯乙烯)和DDE(100μg/L)的个体和联合毒性使用作为模型。我们没有发现单独暴露于NP的斑马鱼幼虫的形态,心脏,呼吸或行为变化。相反,在暴露于DDE和NPS + DDE的斑马鱼幼虫中观察到形态,心脏和呼吸道改变。有趣的是,仅在暴露于NPS + DDE的斑马幼虫中观察到行为变化。这些发现得到了RNA-Seq结果的支持,这表明仅在暴露于NPS + DDE的斑马幼虫中,某些心脏,血管和免疫原性途径被下调。总而言之,我们发现与NP结合使用DDE的毒理学影响增强。