睡眠必要性的生理基础仍不确定。最近的证据表明,睡眠会增加脑脊液 (CSF) 的对流并促进间质溶质的输出,从而为解释为什么所有脊椎动物都需要睡眠提供了一个框架。心血管、呼吸和血管运动脑脉动均已被证明会驱动脑脊液沿血管周围空间流动,但尚不清楚这些脉动在人类睡眠期间如何变化。为了研究这些脉动现象与睡眠的关系,我们同时记录了一组健康志愿者的快速 fMRI、磁共振脑电图 (MREG) 和脑电图 (EEG) 信号。我们通过频谱熵分析量化了信号频率分布的睡眠相关变化,并通过功率总和分析计算了 15 名受试者(年龄 26.5 6 4.2 岁,6 名女性)的生理(血管运动、呼吸和心脏)脑脉动的强度。最后,我们确定了 EEG 慢振荡 (0.2 – 2 Hz) 功率和 MREG 脉动之间的空间相似性。与清醒状态相比,非快速眼动 (NREM) 睡眠的特点是频谱熵降低和脑脉动强度增加。对于极低频 (£ 0.1 Hz) 血管运动脉动,这些影响在后脑区域最为明显,但对于呼吸脉动也在整个大脑范围内明显,对于心脏脑脉动则影响较小。在与显示睡眠相关 MREG 脉动变化的大脑区域空间重叠的大脑区域中,EEG 慢振荡功率增加。我们认为,频谱熵降低和脉动强度增强是 NREM 睡眠的特征。根据我们发现的慢振荡功率增加,目前的结果支持睡眠促进人脑液体运输的假设。
版权所有 © 2022 Helakari 等人。这是一篇开放获取的文章,根据知识共享署名 4.0 国际许可条款分发,允许在任何媒体中不受限制地使用、分发和复制,前提是正确署名原始作品。
。CC-BY-NC-ND 4.0 国际许可,根据 提供(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 4 月 2 日发布。;https://doi.org/10.1101/2024.04.02.587690 doi:bioRxiv 预印本
简介:评估睡眠破碎化的客观度量可能会产生重要特征,反映失眠患者的睡眠质量受损。生存分析允许对NREM睡眠,REM睡眠和唤醒的稳定性进行具体检查。这项研究的目的是评估失眠和健康对照者之间NREM睡眠,REM睡眠和唤醒的生存动力学之间的差异。方法:我们分析了来自86人失眠和94个健康对照的回顾性多聚会记录。对于每个参与者,使用Weibull分布代表REM睡眠,NREM睡眠和唤醒的生存动态。,我们使用拉索·佩纳(Lasso Pena)的参数选择与线性回归相结合,分析参与者组相对于Weibull量表和形状参数的差异,同时校正年龄,性别,性别,总睡眠时间和相关的相互作用效果。结果:发现组对NREM量表参数以及唤醒量表和形状参数的显着影响。的结果表明,与健康对照组相比,失眠的人的NREM睡眠较不稳定,睡眠开始后唤醒更稳定。此外,尾流段长度的分布变化表明,在失眠组觉醒更长的时间后,养生的养殖者增加了。但是,这些不同的加密主要在年轻参与者中观察到。未发现组对REM睡眠生存参数的显着影响。关键字:失眠,生存分析,睡眠碎片结论:如我们的结果所示,生存分析对于解散失眠患者的不同类型的睡眠破裂非常有用。例如,目前的发现表明失眠的人会增加NREM睡眠的分裂,但不一定是REM睡眠。对NREM睡眠破裂的潜在机制的进一步研究可能会导致对失眠患者的睡眠质量受损,从而更好地了解治疗。
有证据表明中枢神经系统(CNS)和自主神经系统(ANS)功能均具有延长的饮酒症。虽然这些障碍持续戒酒,但在睡眠期间,两个系统中都证明了功能的部分恢复。研究与皮质中枢神经系统反应相关的潜在ANS功能障碍(CNS-ANS耦合的损害),我们评估了与DONES的阶段心率(HR)流动相关的质量(HR)爆发,而DONES和那些没有引起K-Complex(KC)(KC)稳定的N2非型n2 n2 nreciD Eys Emportion(NREM)(NREM)的(NREM)的稳定性(NREM)(NREM)的16次abct(NR)(NR)的4月4日(KC)的4月4日(KC)的4月4日, ±8.5岁)和一组13个性别和年龄匹配的对照组合(46.6±9.3岁)。脑电图(EEG)和心电图(ECG)数据整个晚上都记录。饮酒问卷也对AUD患者进行了管理。AUD患者与基线在音调之前的对照组相比,HR升高。与对照组相比,在AUD组中,通过音调表现引起的KC相关的HR弹力显着较小,并且在AUD组中倾向于延迟时间,并且在AUD患者中,随后的减速也较小。在两组中,人力资源的增加均大,并且在产生KC时发生的时间比没有时发生,并且在组之间的KC效应的大小没有差异。阶段性人力资源变化受损,反射ANS功能障碍可能是由于心脏迷走神经传统的改变引起的。©2019由Elsevier Inc.但是,仅发现HR响应的时机与AUD中的寿命含量相关。需要确定这些新发现的临床意义和含义。
纺锤波是非快速眼动 (NREM) 睡眠期间普遍存在的振荡。越来越多的证据表明纺锤波可能与学习和记忆有关,其潜在机制现在开始被揭示。具体而言,纺锤波与树突活动增加和细胞内钙水平升高有关,这种情况有利于可塑性,并且与前馈抑制对尖峰输出的控制有关。在纺锤波期间,丘脑皮质网络对输入没有反应,从而可能防止与记忆相关的内部信息处理和外部信号之间的干扰。在系统层面,纺锤波与其他主要 NREM 振荡共同调节,包括海马尖波涟漪 (SWR) 和新皮质慢波,这两者都先前被证明与学习和记忆有关。在 SWR 时重新激活的顺序发生,随后是促进神经元可塑性的纺锤波,这可能是解释 NREM 睡眠依赖性记忆巩固的一种机制。本文是 Theo Murphy 会议议题“记忆重新激活:重播过去、现在和未来的事件”的一部分。
抽象的理由合成阿片类药物(如芬太尼)有助于阿片类药物使用障碍和药物过量死亡的率提高。睡眠功能障碍和昼夜节律破坏在阿片类药物戒断期间可能会恶化。严重和持续的睡眠和昼夜节律改变是阿片类药物渴望和复发的推定因素。然而,关于芬太尼对睡眠结构和睡眠效果周期的影响,尤其是阿片类药物的戒断,知之甚少。此外,昼夜节律调节睡眠 - 摩擦周期和昼夜节律转录因子,神经元PAS结构域2(NPAS2)参与了睡眠结构和药物奖励的调节。在这里,我们研究了NPAS2在芬太尼诱导的睡眠改变中的作用。确定芬太尼给药和退出对睡眠结构的影响的目标,以及NPAS2作为芬太尼引起的睡眠变化的一个因素。方法脑电图(EEG)和肌电图(EMG)用于测量基线时在基线时和急性和慢性芬太尼在野生型和NPAS2缺乏的雄性小鼠中的急性和慢性芬太尼时测量非比型眼运动睡眠(NREMS)和快速眼动睡眠(REMS)。结果芬太尼的急性和长期给药导致野生型和NPAS2缺陷型小鼠的唤醒和唤醒增加,这种作用在NPAS2缺陷型小鼠中更为明显。慢性芬太尼给药导致NREM降低,在退出期间持续存在,从退出的第1天逐渐减少。在NPAS2缺陷型小鼠中,芬太尼对NREM和唤醒的影响更为明显。结论慢性芬太尼破坏了NREM,导致随后退出的几天内逐渐丧失NREM。NPAS2的丧失加剧了芬太尼对睡眠和唤醒的影响,揭示了昼夜节律转录因子在阿片类药物引起的睡眠变化中的潜在作用。NPAS2的丧失加剧了芬太尼对睡眠和唤醒的影响,揭示了昼夜节律转录因子在阿片类药物引起的睡眠变化中的潜在作用。
睡眠发展 随着大脑的发育,生命最初几年的睡眠会经历许多变化。在所有发育阶段,都有两种类型的睡眠状态,即非快速眼动 (NREM) 睡眠和快速眼动 (REM) 睡眠,也称为“做梦阶段”。NREM 和 REM 睡眠周期交替出现,构成一个睡眠周期。一晚的睡眠通常由大约 4 到 6 个这样的睡眠周期组成。大约 24 小时的睡眠和清醒周期 (昼夜节律) 由大脑中称为“昼夜节律”或“睡眠-觉醒时钟”的部分控制。这种睡眠-觉醒时钟中的一个重要参与者是激素褪黑激素。随着夜晚变暗,大脑会产生褪黑激素,并发出信号,表示该睡觉了。早晨,阳光向大脑发出信号,停止产生褪黑激素,并帮助从睡眠过渡到清醒。
睡眠障碍会影响世界各地数百万的人,并与精神病患者的合并症很高。虽然目前的催眠药主要增加了非比型眼运动睡眠(NREM),但缺乏有选择地起作用快速眼动睡眠(REMS)的药物。这项在雄性大鼠中进行的多个学术研究表明,第一类选择性褪黑激素MT 1受体部分激动剂UCM871增加了REM的持续时间而不会影响NREM的持续时间。UCM871的REMS促进作用是通过以剂量的方式抑制ceruleus(LC)去甲肾上腺素(NE)神经元的响应方式,表达MT 1受体。通过MT 1药理学拮抗作用和腺相关病毒(AAV)载体消除了REMS持续时间的增加和UCM871对LC-NE神经元活性的抑制,从而选择性地击倒了LC-NEMERONS中的MT 1受体。总而言之,MT 1受体激动剂抑制了LC-NE神经元和触发REM,因此代表了与REMS障碍相关的REMS疾病和/或精神疾病的新机制和靶标。
摘要 人类和其他动物无需大量教学就能学会从感官体验中提取一般概念。这种能力被认为是由睡眠等离线状态促进的,在这种状态下,先前的经历会被系统地重播。然而,梦的创造性特征表明,学习语义表征可能不仅仅是重播以前的经历。我们通过实现受生成对抗网络 (GAN) 启发的皮质架构来支持这一假设。我们模型中的学习跨三种不同的全局大脑状态组织,模拟清醒、非快速眼动 (NREM) 和 REM 睡眠,优化不同但互补的目标函数。我们在标准的自然图像数据集上训练模型并评估学习到的表征的质量。我们的结果表明,在 REM 睡眠期间通过对抗性做梦生成新的虚拟感官输入对于提取语义概念至关重要,而在 NREM 睡眠期间通过受干扰的做梦重播情景记忆可以提高潜在表征的稳健性。该模型为睡眠状态、记忆重放和梦境提供了一个新的计算视角,并提出了 GAN 的皮质实现。